

AMGA Foundation

Chronic Care Roundtable

Tackling the Obesity Epidemic Strategies for addressing Diabetes, Cardiovascular and Kidney Disease Comorbidities

©2023 AMGA Foundation. All rights reserved.

November 8, 2023

Thank You Chronic Care Roundtable Partners

©2023 AMGA Foundation. All rights reserved.

CCR Theme

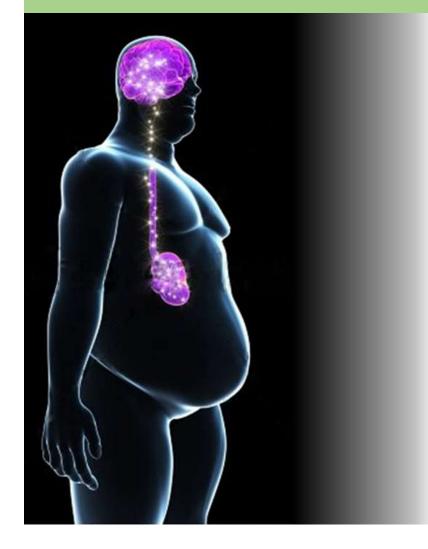
Today's meeting will be focused on preparing medical groups and health systems to ensure equitable access to the next generation of obesity therapies and address obesity comorbidities of diabetes, cardiovascular disease, and kidney disease.

	TY HEAD ENEWS	DLINES
CDC Centers for Disease Control and Prevention CDC 2473 Soving Lives. Protecting People** CDC Newsroom CDC > Newsroom Home > CDC Newsroom Releases	How Does Stigma Affect Patie Overweight, Obesity, or Diabe	
CDC Newsroom Palazer	sity Prevalence Remains High; Support for and Treatment Needed Weight-loss drug ca failure symptoms,	
Turning the Tide on Ol Medical Miracle?	Desity: Are We on the Brink of a	NEWS / HEALTH ONLY IN NEWSDAY Diabetes patients face supply problems from weight- loss drugs' popularity
	ty is becoming more common ng number of states, CDC data	

Start Time	End Time	Agenda Item
9:30 am	10:00 am	Welcome & Introductions John W. Kennedy, MD & Christopher M. Steer , Esq.
10:00 am	10:45 am	Obesity Keynote Christopher Still, DO, FACN, FACP, FTOS
10:45 am	11:00 am	Keynote Q&A
11:00 am	11:15 am	Roundtable Discussions
11:15 am	11:30 pm	Morning Break
11:30 am	12:00 pm	Speaker: Patient Advocate Patricia Nece, JD
12:00 pm	1:00 pm	Networking lunch
		©2023 AMGA Foundation. All rights reserved.

Start Time	End Time	Agenda Item
1:00 pm	2:15 pm	Breakout Sessions <u>Kidney Disease</u> : Sandra J. Taler, MD <u>Diabetes</u> : Brian C. Jameson, DO <u>Cardiovascular Disease</u> : John Clark, MD, PhD
2:15 pm	2:30 pm	Afternoon Break
2:30 pm	3:30 pm	Panel Discussion & Q&A
3:30 pm	4:00 pm	Roundtable Discussions
4:00 pm	4:15 pm	AC24 Preview & Upcoming Materials
4:15 pm	4:30 pm	Closing Remarks
4:30 pm	6:00 pm	Break
6:00 pm	6:30 pm	Cocktail Reception
6:30 pm	8:30 pm	Dinner
		©2023 AMGA Foundation. All rights reserved.

Keynote Speaker


Christopher Still, DO, FACN, FACP, FTOS

Director, Geisinger Obesity Institute Medical Director, Center for Nutrition & Weight Management

©2023 AMGA Foundation.

All rights reserved.

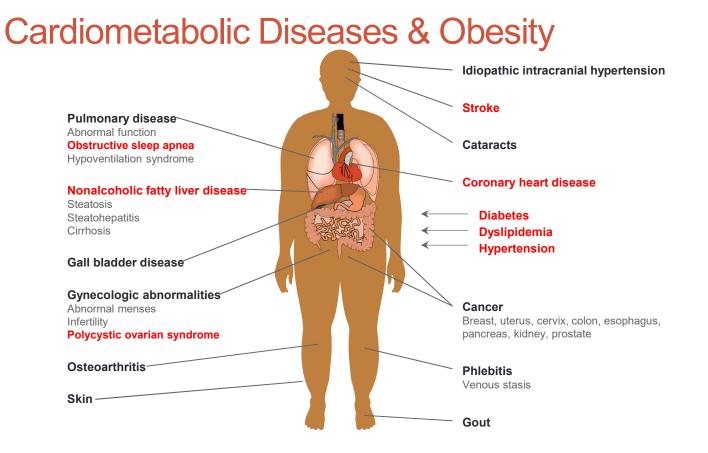
OBESITY: Blame it on the brain.

Supporting the need for Pharmacologic

or Surgical Treatment

Christopher D. Still, DO, FACP, FTOS

Professor of Medicine Department of Clinical Sciences **Geisinger Commonwealth School of Medicine**

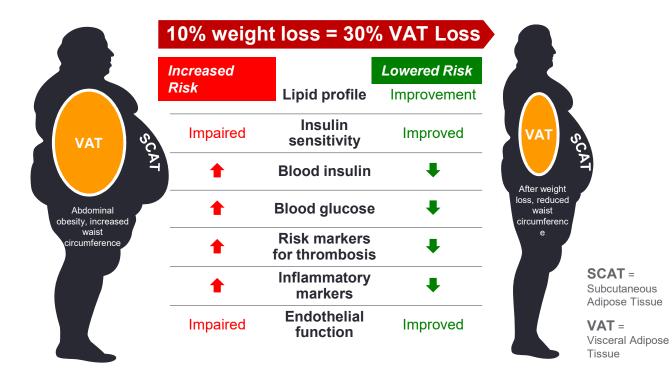

Medical Director, Center for Nutrition & Weight Management Director, Center for Obesity and Metabolic Research **Geisinger Clinic**

November 8, 2023

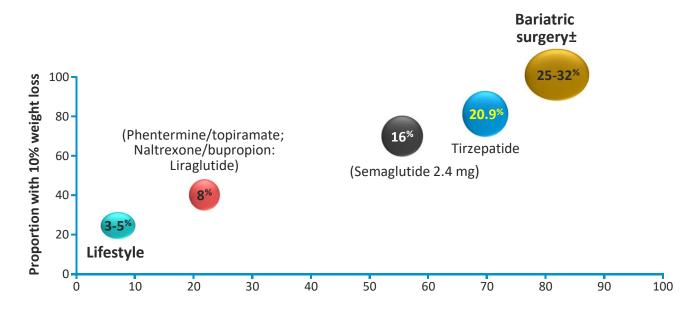
We Love to Lay Blame for OBESITY

- On the people with obesity (whom internalize that blame)
- On food companies
- On sugar (or fat, or artificial sweeteners, etc.)
- On urban planners

On the BRAIN



Therapeutic Weight Loss Reduces Complications


Cefalu. Diabetes Care. 2015;38:1567.

Why is modest weight loss beneficial in Cardiometabolic Diseases?

Adapted from: Després J, et al. BMJ. 2001;322:716-720.

Efficacy of Existing Obesity Interventions

Proportion with 15% weight loss

AoM, anti-obesity medications. Bubble size represents mean % weight loss

Allison DB, et al. Obesity. 2012;20:330-342. [EQUIP]; Gadde KM, et al. Lancet. 2011;37:1341-1352. [CONQER]; Greenway FL, et al. Lancet. 2010;376:595-605. [COR-I]; Apovian CM, et al. Obesity. 2013;21:935-943 [COR-II]; Wadden TA, et al. Obesity. 2011;19(1):110-120. [COR-BMOD]; Pi-Sunyer X, et al. N Engl J Med. 2015;373(1):11-22. [SCALE]; Wadden TA, et al. In J Obes. 2013;37:1443-1451. [SCALE MAIN]: Enebo LB, et al. Lancet. 2011;397(10286):1736-1748. [Cag + Sema]; Wilding JPH, et al. N Engl J Med. 2021;384(11):989. [STEP 1]; Wadden TA, et al. JAMA. 2021;325(14):1403-1413. [STEP 3]; Rubino D, et al. JAMA. 2021;325(14):1414-1425. [STEP 4]; Ryan D. Lancet Diabetes Endocrinol. 2021;9(5):252-254. [STEP]; Sjöström L, et al.

N Engl J Med. 2007;357:741-52; Jastreboff AM, et al. N Engl J Med. 2022;387(3):205-216.

Obesity Is a Chronic Disease With a Complex Etiology¹⁻⁶

Possible interrelated factors contributing to obesity:

 Physiological¹⁻³ Altered levels of hormones and gastrointestinal peptides Altered homeostatic and reward system pathways Weight-positive medications Health conditions (IR, PCOS, DM, etc.) Sleep hygiene/quality 	 Behavioral³ Physiologic "diet" Inactivity/sedentariness Emotional factors/ depression Lack of sleep Smoking cessation
 Genetic⁴ Epigenetics Mutations Single nucleotide polymorphisms 	 Environmental^{5,6} Socioeconomic status Access to/affordability of food Built/physical environment Cultures Sociocultural attitudes Endocrine-disrupting chemicals

1. Lean MEJ et al. Int J Obes (Lond). 2016;40:622-632. 2. Yu YH et al. Obes Rev. 2015;16:234-247.

3. National Heart, Lung, and Blood Institute. 2012.www.nhlbi.nih.gov/health/health-topics/topics/obe/causes#. Accessed July 14, 2016.

4. Moleres A et al. Curr Obes Rep. 2013;2:23-31. 5. Sharma AM et al. Obes Rev. 2010;11:362-370. 6. Chaput JP et al. Obes Rev. 2012;13:681-691.

Obesity is a Complex Disease: Possible Causes

Genetic mutations leading to obesity remain to be elucidated^{1,2}

High heritability of body weight as indicated by twin and adoption studies²

Multiple gene variations in key metabolic and homeostatic pathways may also contribute to obesity¹

~5% of obesity cases may be due to single gene variations in¹: *LEP, LEPR, POMC, MC4R*, and *PCSK1*

LEP=leptin; LEPR=leptin receptor; MC4R=melanocortin receptor 4; PCSK1=proprotein convertase subtilisin/kexin type 1; POMC=proopiomelanocortin.

1. Moleres A et al. Curr Obes Rep. 2013;2:23-31.

2. Chesi A et al. Trends Endocrinol Metab. 2015;26:711-721.

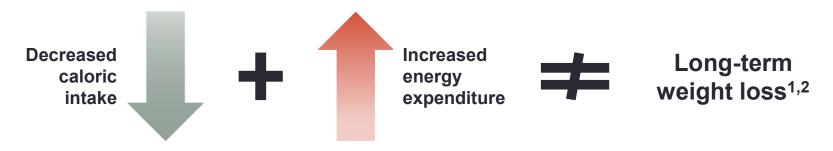
Possible Causes of Poor Weight Loss Maintenance

Adherence

One explanation for the poor long-term outcome of weight-loss diets relates to behavior:

Motivation to adhere to restrictive regimens typically diminishes with time

Hypothalamic Injury


Weight loss elicits biological adaptations that promote weight regain:

Specifically, a decline in energy expenditure (adaptive thermogenesis) and an increase in hunger

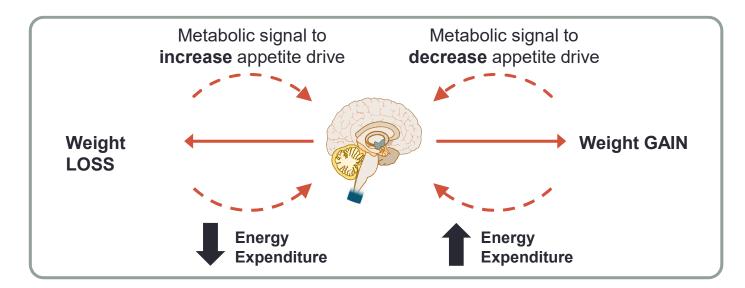
Ebbling CB, et al. JAMA. 2012 Jun 27;307(24):2627-34.

Regulation of Food Intake and Body Weight Regulation

Counting Calories Is Not Enough to Achieve Longterm Weight Loss

CNS pathways sense changes in weight and body energy stores and **exert opposing effects on energy balance** to promote homeostasis³

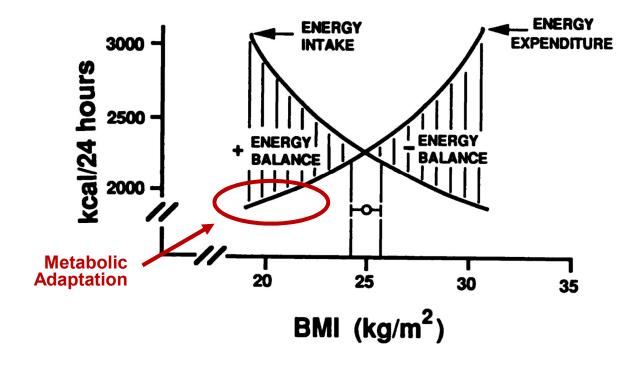
CNS=central nervous system.

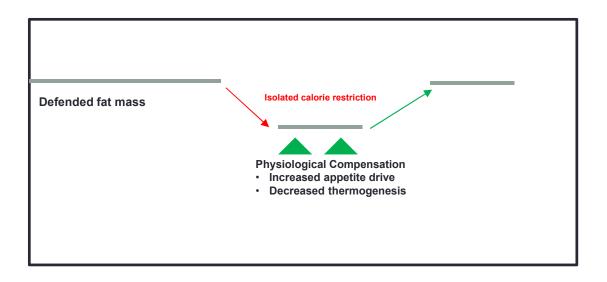

1. Chaput JP et al. Obes Rev. 2012;13:681-691.

2. National Heart, Lung, and Blood Institute. 2012. www.nhlbi.nih.gov/health/health-topics/topics/obe/causes#. Accessed July 14, 2016.

3. Schwartz MW et al. Diabetes. 2003;52:232-238.

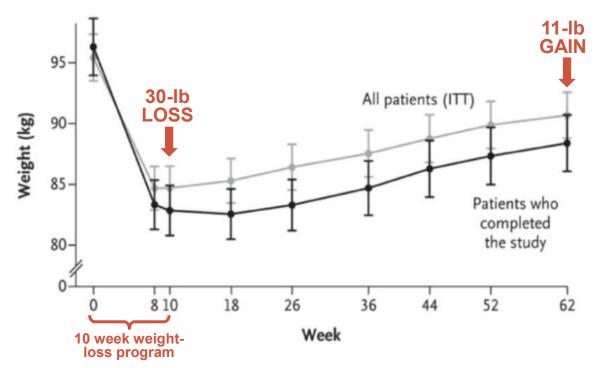
Homeostatic Regulation of Set Point Body Weight¹


A homeostatic weight regulatory system prevents deviation from a body weight set point


Deviation from this set point elicits a **physiological** compensatory mechanism controlling **food intake** and **energy expenditure**

1. Yu YH et al. Obes Rev. 2015;16:234-247.

Defense of a Body Fat Storage "Set Point"



Counter-Physiologic Weight Loss: Caloric Restriction

14% Weight Loss Led to Major <u>Hormonal</u> Adaptations Which Lasted for 1 Year

Changes in Weight from Baseline to Week 62

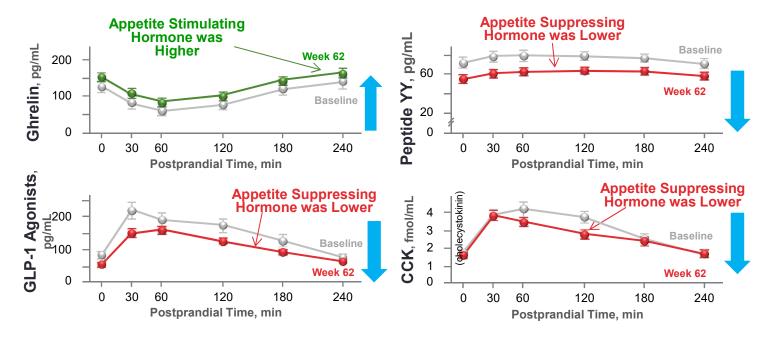
Sumithran P, et al. N Engl J Med. 2011;365:1597-1604.

14% Weight Loss Produced Changes in8 Hormones That Encourage Weight Regain

Mean fasting and postprandial levels of some peripheral signals at baseline and 62 weeks

14% Weight Loss <i>Reduced:</i>	Increased:
 Leptin - 65% Adipose hormone Regulates appetite Control of metabolism & energy homeostasis 	 Ghrelin Gastric hormone Promotes hunger Fat deposition
	Measures of appetite

10-week, lifestyle-based weight loss intervention in healthy overweight and obese adults (n=34)


Led to sustained elevations in appetite stimulating hormone(s) and decreases in appetite suppressing hormones

hormonal changes is WEIGHT GAIN

Sumithran P, et al. N Engl J Med. 2011;365:1597-1604.

Sustained Changes in Peripheral Signals for Up to One Year Following Weight Loss

Mean fasting and postprandial levels of some peripheral signals at baseline and 62 weeks

10-week, lifestyle-based weight loss intervention in healthy overweight and obese adults (n=34) led to sustained elevations in appetite stimulating hormone(s) and decreases in appetite suppressing hormones

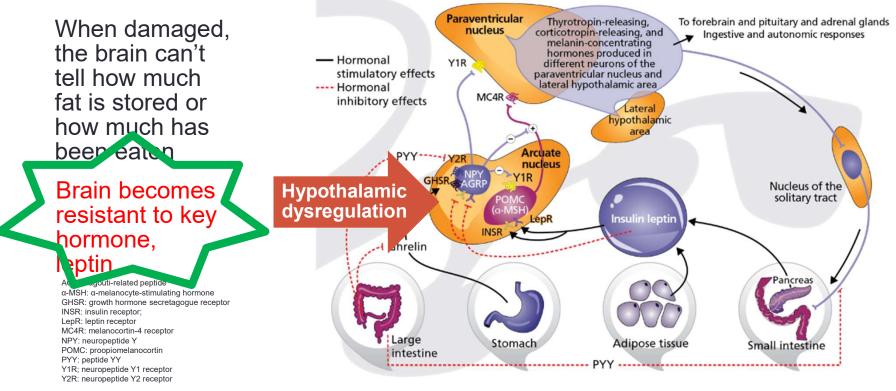
Sumithran P, et al. N Engl J Med. 2011;365:1597-1604.

Complex Peripheral Signals are Integrated Into CNS Systems to **Regulate Body** Weight

CNS, central nervous system PfC, prefrontal cortex NAc, nucleus accumbens VTA, ventral tegmental area PP, pancreatic polypeptide CCK, cholecystokinin; GLP-1, glucagon-like peptide 1 OXM, oxyntomodulin PYY, peptide YY. Primarily based on data from animal studies.

Appetite Stimulating **Appetite Suppressing**

Brain systems (homeostatic and reward) receive and integrate

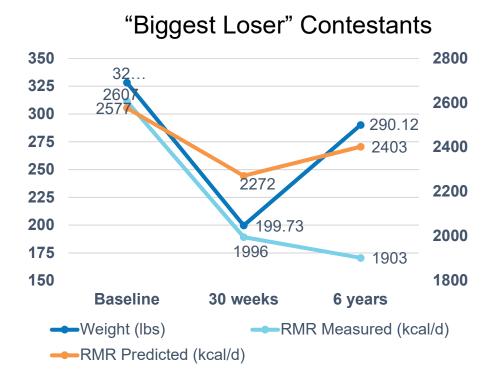

peripheral and other CNS signals (eq, dopamine, serotonin)^{1,2} Peripheral signals are Leptin, insulin, and ghrelin relayed to brain are integrated directly into **Hypothalamus** systems via blood and Vagus Nerve 1,2 Ghrelin Vagus nerve Insulin Liver Stomach Peripheral Leptin GLP-1 signals are OXM PYY released Pancreas by pancreas, gastrointestinal system, and Small intestine Adipose tissue adipose tissue^{1,2}

Color

1. Yu JH et al. Diabetes Metab J. 2012;36(6):391-398. 2. Mendieta-Zerón H et al. Gen Comp Endocrinol. 2008;155:481-495.

25

Hypothalamic **Dysregulation** Diminishes Signaling to Cortex and NTS, Leading to Greater Weight Gain


Apovian CM, Aronne LJ, Bessesen D et al. J Clin Endocrinol Metab. 2015;100:342-362.

Metabolic Adaptation to Weight Reduction

- Reduction in resting metabolic rate greater than that predicted with weight loss alone
- Associated with degree of reduction in leptin levels greater than the percentage of weight loss alone
- Greater weight loss = greater metabolic adaptation
- Subject to individual variability
- Metabolic adaptation after weight loss has been demonstrated for up to 6 years.

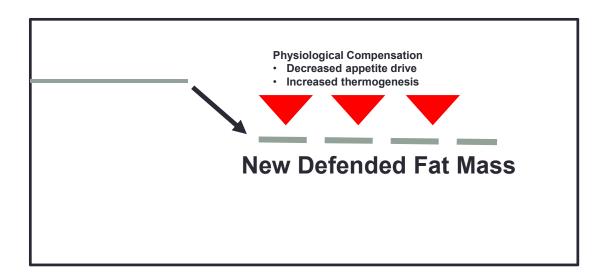
Ravussin, E. and Ryan, D. H. Obesity, 2016. 24: 1607-1608.

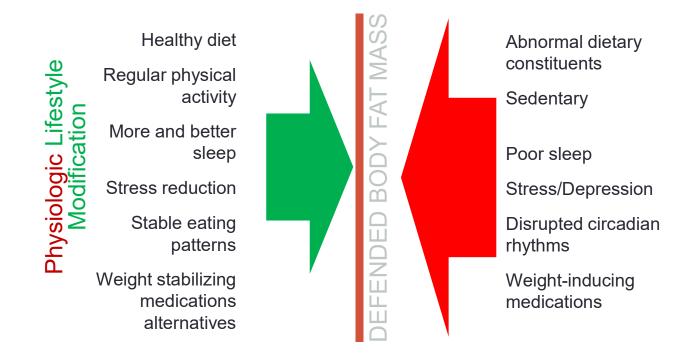
Resting Metabolic Weight Decreases During Weight Loss and Weight Regain

N = 14 Competition = 30 weeks

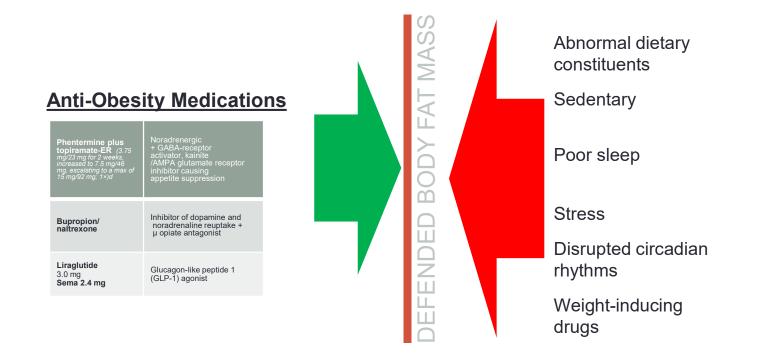
Weight regain was not significantly correlated with metabolic adaptation at the competition's end (r = -0.1, P = 0.75)

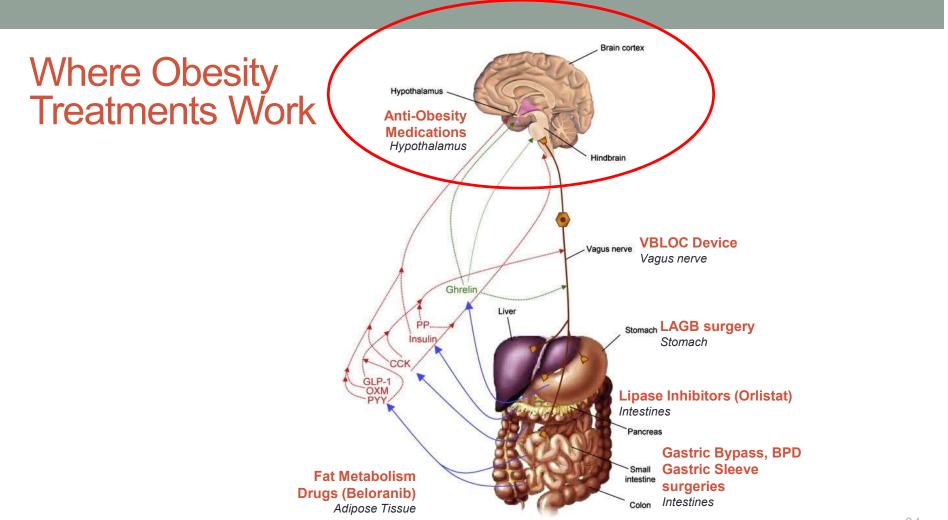
Those maintaining greater weight loss at 6 years also experienced greater concurrent metabolic slowing (r = 0.59, P = 0.025)


Fothergill E, et al. Obesity (Silver Spring). 2016 Aug;24(8):1612-9.

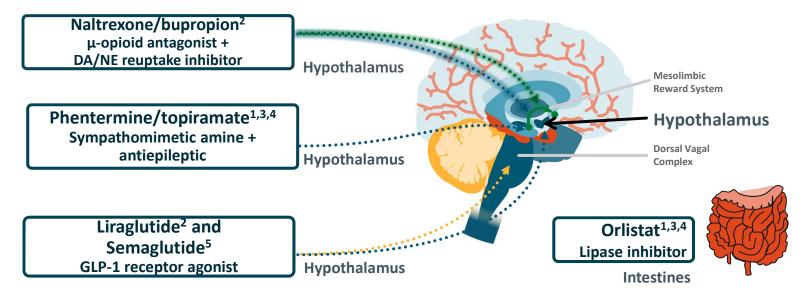

The major problem – nearly all obesity treatment is not physiologically driven

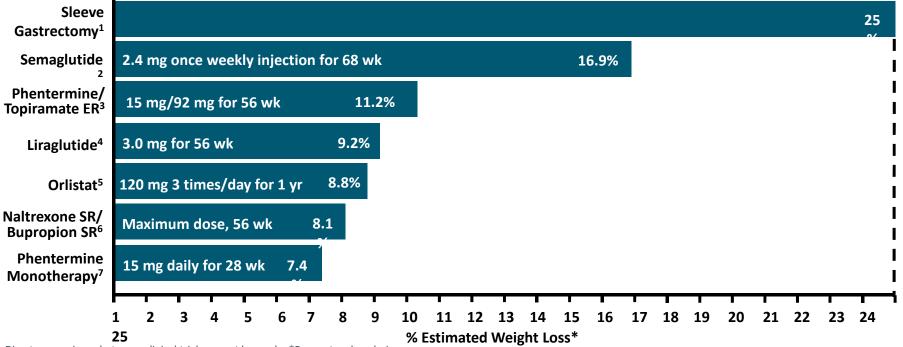
IMPLICATIONS FOR OBESITY TREATMENT


Physiologic Weight Loss: Targeted Lifestyle Modification, Effective Medications, Surgery



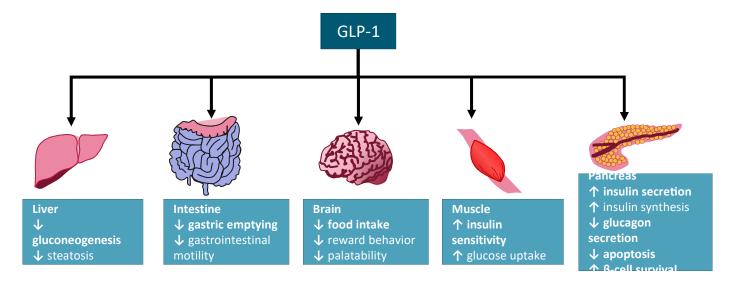
Battle of **Physiologic** Forces that Influence Fat Mass


Battle of **Physiologic** Forces that Influence Fat Mass


Current Obesity Pharmacotherapy for Long-term Use

 Multiple pharmacotherapies with varying MoA currently approved in US for long-term treatment of obesity¹⁻⁴

1. Yanovski. JAMA. 2014;311:74. 2. Apovian. J Clin Endocrinol Metab. 2015;100:342. 3. Kim. Clin Pharmacol Ther. 2014;95:53. 4. Dietrich. Nat Rev Drug Discov. 2012;11:675. 5. Christou. Obes Rev. 2019;20:805.


Efficacy of Current FDA-Approved Obesity Therapy

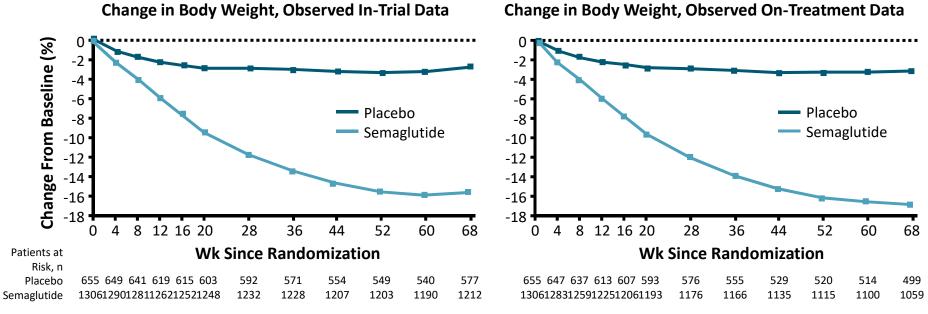
Direct comparisons between clinical trials cannot be made. *Per protocol analysis.

1. Mechanick. Endocr Pract. 2019;25(12):1346. 2. Wilding. NEJM. 2021;384:989. 3. Allison. Obesity (Silver Spring). 2012;20:330. 4. Pi-Sunyer. NEJM. 2015;373:11. 7. Finer. Int J Obes Relat Metab Disord. 2000;24:306. 6. Greenway. Lancet. 2010;376:595. 7. Aronne. Obesity (Silver Spring). 2013;21:2163.

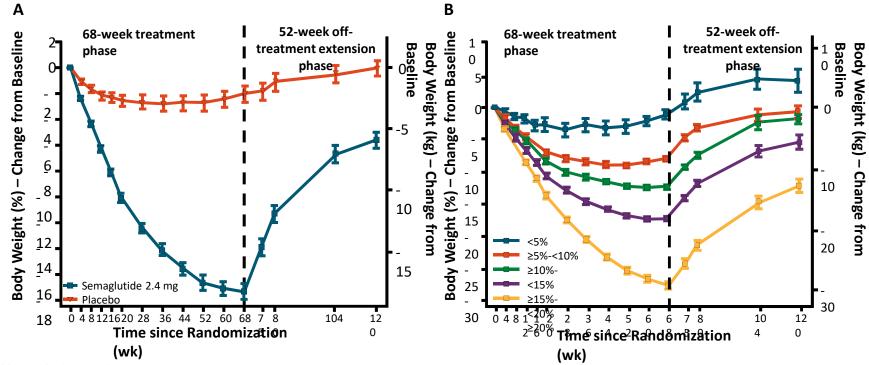
Regulation of Body Weight and Glucose Metabolism by GLP-1 Receptor Agonism

 The specific mechanism of action is multifactorial, with gut, brain, and systemic improvements in insulin sensitivity each contributing a finite fraction to the total efficacy

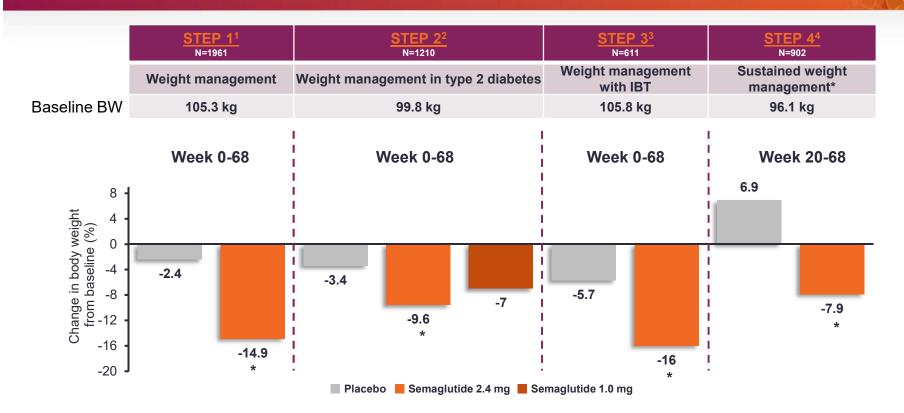
Müller. Nat Rev Drug Discov. 2022;21:201.


Semaglutide (2.4 mg): Efficacy vs Placebo

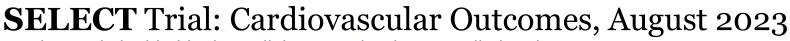
Wilding. NEJM. 2021;384:989.


STEP 1 Trial: Body Weight Changes With Semaglutide

 Double-blind, placebo-controlled phase III trial in adults with BMI >30 kg/m² without diabetes (N = 1961)


Wilding. NEJM. 2021;384:989.

STEP 1 Trial Extension of Semaglutide 2.4 mg


Semaglutide 2.4 mg: Mean Weight Loss (STEP Trials)

Primary endpoint. *Statistically significant vs placebo.

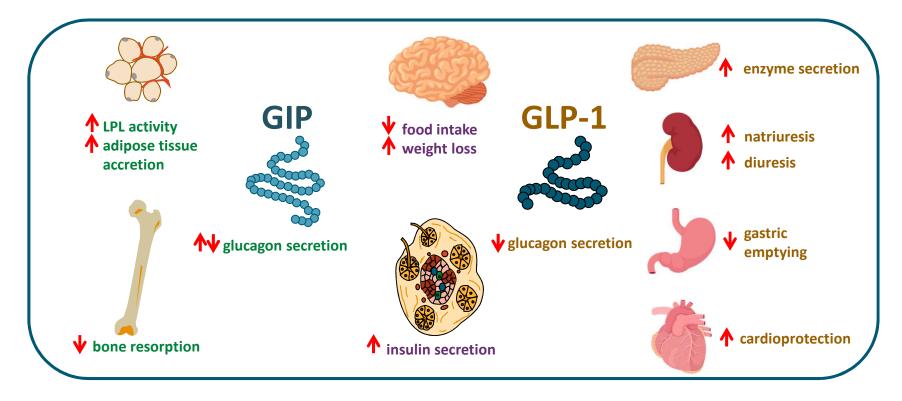
BW = body weight; IBT = intensive behavioral therapy

1. Wilding JPH et al. *N Engl J Med.* 2021;384(11):989-1002. 2. Davies M et al. *Lancet.* 2021;397(10278):971-84. 3. Wadden TA et al. *JAMA*. 2021;325(14):1403-13. 4. Rubino D et al. *JAMA*. 2021;325(14):1414-25.

Randomised, double-blind, parallel-group, placebo-controlled trial

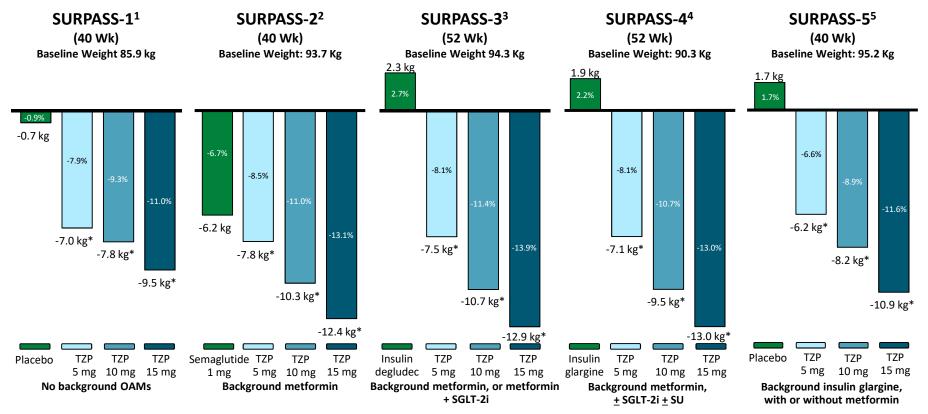
Semaglutide 2.4 mg reduced risk of major adverse cardiovascular events (MACE) by 22% in adults with overweight or obesity

- n = 17,604 adults
- <u>></u> 45 years
- BMI ≥27 kg/m²
- with established CVD and no prior history of diabetes


Evaluated subcutaneous once-weekly semaglutide 2.4 mg vs placebo as an adjunct to standard of care for prevention of MACE, over a period of up to five years

https://www.novonordisk.com/news-and-media/news-and-ir-materials/news-details.html?id=166301

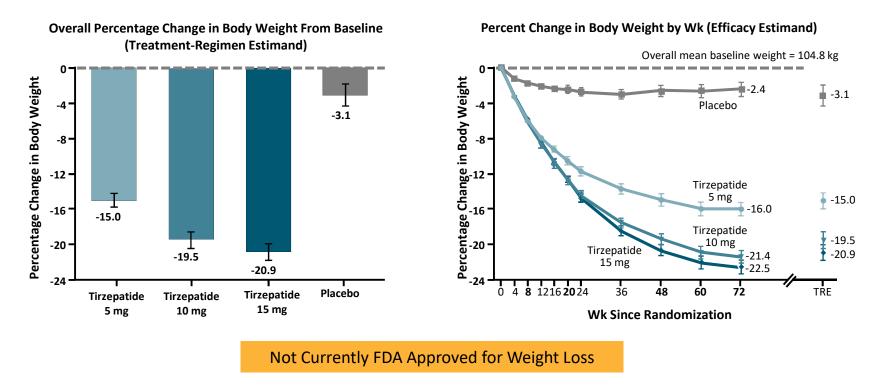
The Evolving GIP–GLP-1 Partnership in Metabolism

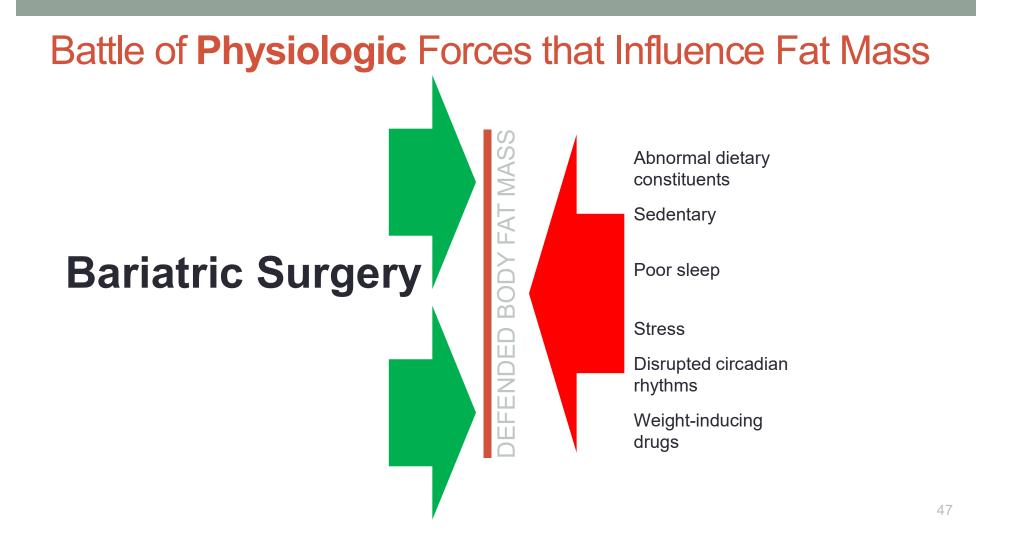

Baggio. J Mol Metabolism. 2020;46:101090.

Tirzepatide: Novel Dual GIP and GLP-1 Receptor Agonist

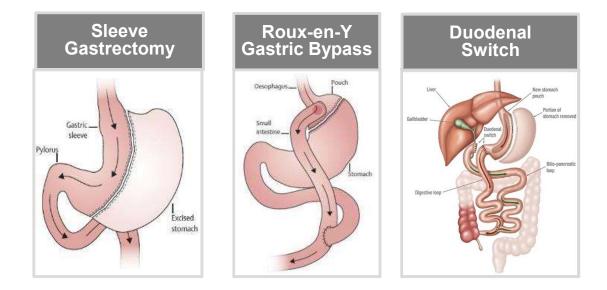
- Tirzepatide is multifunctional 39 amino acid peptide based on native GIP peptide sequence and modified to bind to GIP or GLP-1 receptors
- Administered as once-weekly injection as half-life of 5 days
 - Starting dose 2.5 mg weekly, titrated at 2.5-mg increments monthly to max dose of 15 mg
- Demonstrated dose-dependent reduction in HbA1c (up to 2.4%) and body weight (up to 11.3 kg) in patients with T2D in phase I and II trials
- Contraindications and AEs similar to GLP-1 RAs
- Contraindications: personal or family history of MTC or MEN2
 - Precautions: pancreatitis, AKI, diabetic retinopathy, gallbladder disease

- Adverse events: Gl including nausea, vomiting, diarrhea, constipation, abdominal pain Min. Diabetes Ther. 2021;12:143. Coskun. Mol Metab. 2018;18:3. Tirzepatide Pl.




1. Rosenstock. Lancet. 2021;398:143. 2. Frias. NEJM. 2021;385:503. 3. Giorgino. ADA 2021. Abstr 78-LB. 4. Del Prato. Lancet. 2021;398:1811. 5. Dahl. ADA 2021. Abstr 80-LB.

*Denotes statistical significance to comparator.


SURMOUNT 1: Weight Loss With Tirzepatide

Jastreboff. NEJM. 2022;387(3):205.

Most Common Bariatric Procedures

98% performed laparoscopically Average length of stay – 1.2 days

Madsbad S, et al. *Lancet Diabetes Endocrinol*. 2014;2(2):152-64. ASMBS. Estimate of Bariatric Surgery Numbers, 2011-2017. http://asmbs.org/resources/estimate-of-bariatric-surgerynumbers. Accessed Sept 17, 2018.

Why does bariatric surgery work so well?

Food Intake	Potential Mediators of Decreased Food Intake	Hormonal	Food Preferences Change	Change in Bile Acids
 Changes in hunger and fullness via enhanced satiety leading to decrease in calorie intake 	 Increased transit of food into mid-gut through gastric pouch 	 GLP-1 and PYY increase Ghrelin decreases 	 Dumping syndrome? Conditioned food avoidance? 	 Partly responsible for intestinal hypertrophy, anorexigenic hormone secretion and alterations in gut
 Mean caloric intake 600-700 one month postop to 1000-1800 after first year Average reduction of 1800 kcal per day from pre-op intake sustained for several years 	Mediators for Food Preferences	Change in Gut Microbiota	Calorie Malabsorption	microbiota; activation of FXR signaling
	 Taste function domains Sensory- discriminative (stimulus identification) Hedonic (ingestive motivation) altered brain responsivity to high calorie food cues Physiological (digestive preparation) 	 Short chain fatty acids – calorie extraction/signals 	 Exclusion of 10% of the bowel after RYGB unlikely to result in 	
		Energy Expenditure	result in malabsorption Neural	
		 Increase/Decreased basal metabolic rate after bariatric surgery – in gut? 		
			 Vagal and partial vagal transection 	

PATIENT CASE

Mrs. Jones

38-year-old woman with a history of depression, migraine headaches, premenstrual dysphoric disorder, seasonal allergies, who presents for routine medical follow-up. No significant change in health since last visit 6 months ago but is concerned about a 10-lb weight gain. She has been following a low-fat meal plan but not much physical activity.

Examination:

- Weight, 288 lbs
- Height, 67" BMI, 45 kg/m²
- Waist circumference, 46 inches

Medications

- Propranolol 160 mg QD
- Paroxetine 37.5 mg QD
- Diphenhydramine 25 mg at bedtime

(+) ROS

Occasional AM headaches and daytime fatigue

Labs

Unremarkable except A1c is 6.4% and fasting insulin 79 mIU/L

Weight Loss Journey

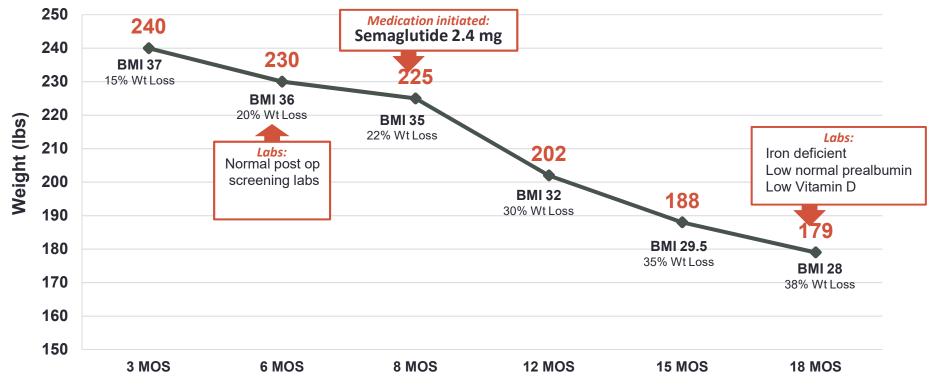
Initial "Physiologic" Recommendations:

- Started Mediterranean-type meal plan instead of low-fat diet
- Screened and treated her OSA with CPAP
- Stopped paroxetine and diphenhydramine
- Started metformin XR
- Started bupropion ER/Naltrexone ER
- Increased physical activity
- Enrolled in bariatric surgery process

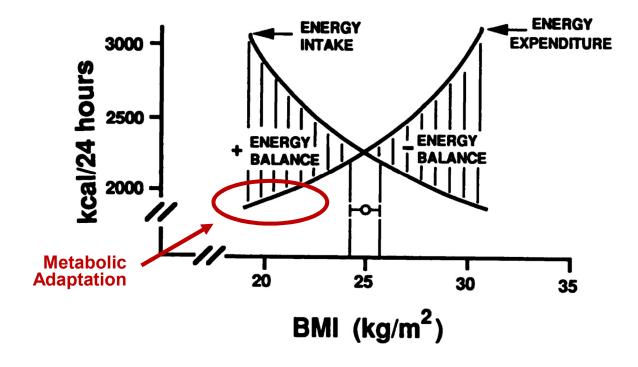
3 months:

- 5% weight loss
- Weight 274#

6 months:

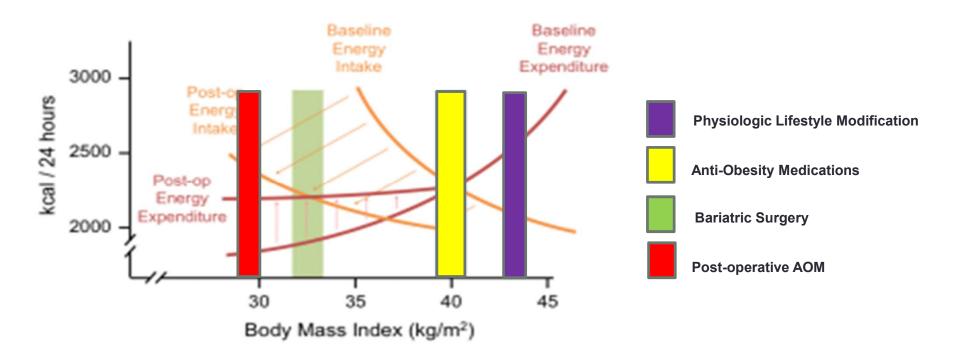

- 8% weight loss / 265#
- Underwent uncomplicated laparoscopic sleeve gastrectomy

Post Surgery Weight Loss Journey (Con't)


- 3 months post op
 - 15% weight loss
 - 240#/BMI 37
- 6 months post op
 - 20% weight loss
 - 230# / BMI 36
 - Labs obtained
- 8 months post op
 - 22% weight loss
 - 225# / BMI 35
 - Initiated Semaglutide 2.4 mg

- 12 months post op
 30% weight loss
 202# / BMI 32
- 15 months post op
 35% weight loss
 - 188# / BMI 29.5
- 18month post op
 - 38% weight loss
 - 179# / BMI 28
 - Labs obtained

Mrs. Jones: Post-op Weight Journey



Defense of a Body Fat Storage "Set Point"

55 55

Physiologic Weight Loss: Physiologic Lifestyle Modification, Effective Medications, Surgery

Conclusion:

- The disease of obesity is a major driver of cardiometabolic diseases
- A modest weight loss of at least 5-10% does have significant metabolic benefits but greater weight loss → greater benefit.
- Obesity is a dysregulation of energy balance which is a function of the brain
- Physiologic lifestyle Modification, effective AO medications, and bariatric surgery are often required for physiologic compensation to a NEW DEFENDED FAT MASS

©2023 AMGA Foundation. All rights reserved.

Roundtable Discussion on Keynote

- 1. What resonated with you most in Dr. Still's presentation?
- 2. What are you now rethinking given the information Dr. Still shared?
- 3. How are you incorporating therapeutic weight loss into your treatment plans? How do you get patient buy-in for the efficacy of existing obesity interventions?

Speaker: Patient Perspective

Patricia Nece

©2023 AMGA Foundation. All rights reserved.

Breakout Session Overview

- These breakouts will run concurrently.
- The breakout room assignments are <u>only</u> suggestions.
- In fairness to the facilitators, once you've selected a breakout, we politely ask you to remain in that room.
- We encourage conversation from all!

Breakout Facilitators

Diabetes

Brian C. Jameson, DO Endocrinologist Geisinger Health System

Kidney Disease

Sandra J. Taler, MD

Consultant, Division of Nephrology/Hypertension, Professor of Medicine, College of Medicine, Mayo Clinic

©2023 AMGA Foundation. / All rights reserved.

Cardiovascular

John Clark, MD, PhD Associate Professor UC San Diego Health

Suggested Breakout Assignments

Diabetes Breakout

<u>Salon I</u>

- Nkem O Akinsoto
- Fred Bloom
- Ken Bogenschutz
- Suelyn Boucree
- James Gaither
- Thomas Grace
- Insha Haque
- Leslie High
- Leon Jerrels
- Sonya Kokil Raikar
- Chalak Muhammad
- Richard Mulcahey
- Courtney Peters
- Kay Sadik
- Bruce Taylor

Kidney Breakout <u>Plaza C</u>

- Robert Charles
- Dave Dolton
- Claire Grawburg
- Angie Griffith
- Victoria Harris
- Meredith Milligan
- Tesha Montgomery
- Sara Mukherjee
- Philip Oravetz
- Stacie Smith
- Laura Wilson
- Stephen Winn

Cardiovascular Breakout <u>Plaza D</u>

- Alka Atal-Barrio
- Alexander Baer
- David Boyd
- Frank Colangelo
- Stephanie Copeland
- Rebecca Fitch
- Joel Ortiz
- Barbara Pritchard
- Crystal Redfern
- Christi Taylor
- Rachel Thomas
- Martine Thurin

Panel Discussion with Facilitators and Audience

John W. Kennedy, MD

President, AMGA Foundation Chief Medical Officer, AMGA

Christopher M. Steer, Esq.

Founder & CEO Steer, LLC

©2023 AMGA Foundation.

All rights reserved.

64

Breakout Facilitators

Diabetes

Brian C. Jameson, DO Endocrinologist Geisinger Health System

Kidney Disease

Sandra J. Taler, MD

Consultant, Division of Nephrology/Hypertension, Professor of Medicine, College of Medicine, Mayo Clinic

©2023 AMGA Foundation. / All rights reserved.

Cardiovascular

John Clark, MD, PhD Associate Professor UC San Diego Health

AC24 Preview & Action

Christopher M. Steer, Esq. Founder & CEO Steer, LLC

©2023 AMGA Foundation. All rights reserved.

AC24 Preview & Action

Wednesday, April 10, 2024 10:30 am – 12:30 pm Rosen Shingle Creek | Orlando, Florida

Tackling the Obesity Epidemic 2.0: Implementing the Takeaways

©2023 AMGA Foundation. All rights reserved.