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Abstract

Objective: To develop an electronic health record (EHR)-based risk tool that provides point-of-care
estimates of diabetes risk to support targeting interventions to patients most likely to benefit.
Patients and Methods: A risk prediction model was developed and validated in a large observational
database of patients with an index visit date between January 1, 2012, and December 31, 2016, with
treatment effect estimates from risk-based reanalysis of clinical trial data. The risk model development
cohort included 1.1 million patients with prediabetes from the OptumLabs Data Warehouse (OLDW);
the validation cohort included a distinct sample of 1.1 million patients in OLDW. The randomly
assigned clinical trial cohort included 3081 people from the Diabetes Prevention Program (DPP)
study.
Results: Eleven variables reliably obtainable from the EHR were used to predict diabetes risk. This
model validated well in the OLDW (C statistic ¼ 0.76; observed 3-year diabetes rate was 1.8% (95%
confidence interval [CI], 1.7 to 1.9) in the lowest-risk quarter and 19.6% (19.4 to 19.8) in the highest-
risk quarter). In the DPP, the hazard ratio (HR) for lifestyle modification was constant across all levels
of risk (HR, 0.43; 95% CI, 0.35 to 0.53), whereas the HR for metformin was highly risk dependent
(HR, 1.1; 95% CI, 0.61 to 2.0 in the lowest-risk quarter vs HR, 0.45; 95% CI, 0.35 to 0.59 in the
highest-risk quarter). Fifty-three percent of the benefits of population-wide dissemination of the DPP
lifestyle modification and 73% of the benefits of population-wide metformin therapy can be obtained
by targeting the highest-risk quarter of patients.
Conclusion: The TuftsePredictive Analytics and Comparative Effectiveness DPP Risk model is an
EHR-compatible tool that might support targeted diabetes prevention to more efficiently realize the
benefits of the DPP interventions.
ª 2021Mayo Foundation for Medical Education andResearch. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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T he Diabetes Prevention Program
(DPP) Study showed that either an
intensive program of lifestyle modifi-

cation or pharmacotherapy with metformin
substantially reduced the risk for developing
type 2 diabetes in patients at high risk,
compared with “usual care.”1 The findings
have broad implications because “prediabetes”
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affects approximately 88 million adults in the
United States.2

Strenuous calls to address the epidemic of
diabetes with prevention3,4 have been counter-
balanced by concerns about the overmedicali-
zation of prediabetes.5 Almost 2 decades after
publication of the DPP Study, it remains
unclear how best to implement these
16/j.mayocp.2021.09.012
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interventions in such an overwhelmingly large,
and mostly undiagnosed, population. A 2015
study examining a national sample of more
than 17,000 working-age adults with prediabe-
tes found that only 3.7%were receivingmetfor-
min.6 Similarly, widespread use of the intensive
lifestyle intervention remains largely unreal-
ized despite evidence that rigorous diet and
physical activity promotion reduces diabetes
risk in the community setting.7

However, prediabetes is itself a heteroge-
neous condition. We previously showed that
even among patients enrolled in the DPP
Study itself, the risk for developing diabetes
within 3 years varies widely and is highly
skewed.8 Some trial participants were esti-
mated to have a 1% to 2% risk; others,
90%. Unsurprisingly, the degree of benefit
from metformin therapy or from the lifestyle
intervention was also distributed unevenly.

This prior proof-of-concept work had
several limitations. Notably, the risk distribu-
tionwithin theDPP trial participantsmay differ
from that of patients seen in routine practice,
particularly since the American Diabetes Asso-
ciation (ADA) has subsequently broadened its
definition of prediabetes to include a still
more heterogeneous population.9 Further, the
application of prediction methods to data
routinely collected in the electronic health re-
cord (EHR) provides a promising means to
overcome some of the major barriers to the
use of risk models.10,11 For example, in addi-
tion to requiring manual ascertainment of vari-
ables, the previously reported DPP-based
model required waist circumference and waist
to hip ratio measurements that are not difficult
to ascertain in routine practice.Wedescribe the
development of a clinical predictionmodel, the
TuftsePredictive Analytics and Comparative
Effectiveness DPP risk model, using a hybrid
approach that makes use of routinely collected
EHR data to predict the risk for diabetes onset
and clinical trial data to estimate unbiased
risk-based effects of preventive interventions.
PATIENTS AND METHODS

Overview
We sought to develop and validate a diabetes
risk prediction model using data elements
Mayo Clin Proc. n April 202
readily available in the EHR for dissemina-
tion across health care systems as an EHR-
embedded tool, to facilitate ease of use.
The tool provides clinicians and their pa-
tients with an individualized risk for devel-
oping diabetes and the estimated benefit of
applying a DPP treatment strategy, either
an intensive lifestyle program or pharmaco-
therapy with metformin (the combination
of both was not tested in the DPP Study).

Data Sources and Participants
The model was developed and validated us-
ing EHR data from the OptumLabs Data
Warehouse (OLDW). The OptumLabs EHR
database is a geographically diverse sample
of the US population with longitudinal clin-
ical data on more than 33 million lives with
at least 1 clinic visit during the study period.
Using a retrospective observational cohort
design, we geographically stratified the data-
base by US Census Region into a develop-
ment cohort of 1,076,983 patients
(Northeast, South, and West) and a separate
validation cohort of 1,075,833 patients
(Midwest).

Eligibility criteria included age between 25
and 75 years on an “index” office or clinic
encounter (index visit defined by Current Pro-
cedural Terminology/Healthcare CommonPro-
cedure Coding System codes; Supplemental
Table 1, available online at http://www.
mayoclinicproceedings.org) between January
1, 2012, and December 31, 2016, at which
time they met laboratory-based criteria for
the diagnosis of prediabetes. (The age enroll-
ment was selected because it approximated
the age distribution of the DPP trial, which
enrolled patients � 25 years.) Prediabetes
was defined by current ADA criteria, that is,
having no diagnosis of type 1 or type 2 diabetes
on the problem list and one of the following
within 12months before the visit: hemoglobin
A1c (HbA1c) level between 5.7% and 6.4% in-
clusive and/or fasting glucose (FG) level be-
tween 100 and 125 mg/dL (to convert to
mmol/L, multiply by 0.0555) inclusive.
Because labeling of fasting status may be
incomplete, a glucose level drawn at the same
time as a lipid panel or triglycerides was
considered as fasting. We did not use the
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
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2-hour posteglucose load criterion because it
is rarely used in clinical practice for prediabe-
tes. Patients were excluded if they had random
(nonfasting) glucose levels of 200 mg/dL or
greater on2occasionswithin a 3-monthperiod
before the index visit. Women with docu-
mented pregnancywithin 24months of the in-
dex visit were also excluded. To ascertain the
development of diabetes, patients also had to
have some clinical activity 3 years after the in-
dex visit. Eligibility criteria are detailed in
Supplemental Table 1.

The DPP data set was used to estimate
treatment effect for metformin or the inten-
sive lifestyle modification program. The
design, rationale, outcomes, and loss to
follow-up of the DPP have been described
in detail elsewhere.1,12

Briefly, inclusion criteria included a body
mass index (BMI; calculated as the weight in
kilograms divided by the height in meters
squared) of 24 or higher (�22 kg/m2 in
Asians) and a plasma FG concentration of
95 to 125 mg/dL inclusive (impaired FG)
and a concentration of 140 to 199 mg/dL in-
clusive 2 hours after a 75-g oral glucose load
(impaired glucose tolerance). We note that
these criteria differ from the ADA’s current
diagnostic criteria for prediabetes that we
used for the OLDW model; the ADA defini-
tion imposes no BMI requirement.13

The DPP participants were randomly
assigned to: (1) standard lifestyle recommen-
dations plus 850 mg of metformin twice
daily, (2) an intensive program of lifestyle
modification that included 16 lessons with
a case manager and set goals of at least a
7% weight loss and at least 150 minutes of
physical activity per week, or (3) standard
lifestyle recommendations plus placebo
twice daily. After a median follow-up period
of 2.8 (range, 1.8-4.6) years, progression to
diabetes was reduced by 58% (95% CI,
47% to 66%) in the lifestyle modification
arm and 31% (17% to 43%) in the metformin
arm, both compared with the placebo arm.1

The National Institute of Diabetes and Diges-
tive and Kidney Diseases Data Repository,
from which we obtained data, includes
3081 of the 3234 DPP participants (95% of
full population) because some local
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
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institutional review boards (IRBs) declined
to participate in data distribution.

Outcome
For the OLDW cohort, the time-to-event
outcomewas defined as the time to the first pa-
tient encounter after the index visit with docu-
mented evidence of type 2 diabetes by any of
the following criteria,14 diagnosis codes Inter-
national Classification of Diseases, Ninth Revi-
sion 250.x0 or 250.x2 or International
Classification of Diseases, Tenth Revision
E11.xx, pharmacotherapy or procedure for
type 2 diabetes (as detailed in Supplemental
Table 1), HbA1c level greater than 6.4%, FG
(or presumed fasting, as noted) level greater
than 125 mg/dL, or 2-hour oral glucose toler-
ance test postload glucose level greater than
199 mg/dL. Laboratory-based criteria required
confirmation by an additional laboratory in the
diabetes range or by another method (ie, diag-
nosis or medication). Follow-up time for pa-
tients who did not meet the outcome
definition was censored at the first occurrence
of the last observed encounter or end of study
period.

Candidate Predictors
A priori risk model predictors were identi-
fied by a systematic review conducted by
Collins et al.15 We selected the following
11 independent variables that were included
in at least 3 prior diabetes risk models and
were judged to be easily and reliably obtain-
able in EHR data: age, sex, race, smoking
status, BMI, presence or absence of a diag-
nosis of hypertension, systolic blood pres-
sure, high-density lipoprotein cholesterol
level, triglyceride level, FG level, and HbA1c

level. Four variables included in 3 prior
models were not considered based on the
difficulty of ascertaining them in EHR data:
physical activity, waist circumference, waist
to hip ratio, and family history of diabetes.

Missing Data
Missing data is a common limitation when
working with EHR data.16 Although multiple
imputation may improve estimates of param-
eter effects under a missing-at-random
assumption, it does not provide a practical
16/j.mayocp.2021.09.012 705
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Final cohort after age and pregnancy
exclusions

With prediabetes, based on current
ADA criteria

With glycemic laboratory result ˜17 million patients

˜33 million patients

˜2.6 million patients

˜2.2 million patients

Development cohort

Validation cohort

n=1,076,983

n=1,075,833

Patients with qualifying visit during
the eligibility period
1/1/2012 to 12/31/2016

FIGURE 1. Consolidated Standards of Reporting Trials diagram for OptumLabs Data Warehouse deri-
vation and validation cohort. The figure depicts the number of eligible patients as each inclusion criterion is
applied. Starting with an initial population size of more than 33 million patients, our final study cohort
consists of 2,152,816 eligible patients.
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means to cope with missingness in actual pa-
tients for whom a prediction needs to be
made. Thus, we used missing indicator vari-
ables to capture the predictive effects of miss-
ingness under the assumption that future and
prior missingness are similarly informative.
For each predictor, an additional dichotomous
variable indicated the presence of missing
values.17,18 For continuous variables (eg, BMI
andHbA1c level), themissing value of the orig-
inal variable was replaced by a fixed constant
(the median) before model estimation, and
the missing indicator variable appropriately
adjusted for the “missing variable effect.” For
categorical variables (eg, race and smoking sta-
tus), an additional levelwas added todefine the
missing category.
Model Development
We used multivariable Cox proportional haz-
ards regression to estimate the predicted prob-
ability of developing type 2 diabetes. We
included 2 a priori interactions, race � BMI
and race�HbA1c level, based on clinical judg-
ment and the literature.19,20 Model perfor-
mance was assessed for discrimination and
Mayo Clin Proc. n April 202
calibration. A bootstrap resampling procedure
with 500 samples was used to internally vali-
date the model, estimate optimism-corrected
discrimination, and assess calibration.
Model Validation
Using the equation derived in the develop-
ment cohort, we calculated the predicted
probability of developing type 2 diabetes
for patients in the validation cohort. Model
performance on external validation was
assessed for discrimination using Harrell’s
measure of concordance for censored
response variable and calibration.21
Estimating Risk-Specific Treatment Effects
To estimate the risk-based treatment effect
for metformin pharmacotherapy or the DPP
lifestyle modification, we performed a risk-
based heterogeneity of treatment effect anal-
ysis on the DPP.22 The applicability of the
OLDW model to the DPP data was antici-
pated to be limited by differences between
predictor variable definitions and measure-
ment within a trial context vs EHR data, dif-
ferences in the pattern of missingness
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
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TABLE 1. Cohort Characteristicsa,b

Overall OLDW

DPP

Missing, % n¼2,152,816

Development Validation

n¼1,076,983 n¼1,075,833 n¼3081

Age (y), mean � SD 0.0 54.9�11.7 55.1�11.9 55�11.5 50.6�9.0

Female sex, % 0.1 50.3 51.3 49.1 66.6

Race, % 8.2
White 86.5 84.3 88.9 57.4
Black 10.2 10.8 9.1 20.9
Other non-White race (Optum ¼ Asian) 3.4 4.9 1.9 5.2

Smoking status, % 15.6
Current smoker 23.3 20.0 26.4 9.0
Never smoked 48.0 53.2 42.9 35.2
Former smoker 28.8 26.8 30.7 55.8

Height (cm), mean � SD 15.9 170.1�10.1 169.5�10.1 170.7�10 166.8�9.2

Body mass index (kg/m2), mean � SD 12.2 31.1�7 30.8�6.7 31.8�6.9 33.5�5.8

Diagnosis of hypertension, % 0 44.5 44.4 45.0 27.1

Systolic blood pressure (mm Hg), mean � SD 9.0 127.4�14.9 127.6�15.2 127.3�14.7 124.2�14.7

HDL cholesterol (mg/dL), mean � SD 12.3 50.9�14.7 51.3�14.9 50.6�14.5 45.6�11.8

Triglycerides (mg/dL), mean � SD 12.6 138.3�72.8 136.9�72.8 139.7�72.7 162.9�93.5

Hemoglobin A1c (%), mean � SD 54.7 5.8�0.3 5.8�0.3 5.8�0.3 5.9�0.5

Fasting plasma glucose (mg/dL), mean � SD 3.8 103.7�10.8 103�11.1 104.5�10.4 107.2�7.7
Fasting plasma glucose, (fasting) (mg/dL), mean � SD 86.3 103.3�9.2 101.3�10.5 105.3�7.3

Fasting plasma glucose (random) (mg/dL), mean � SD 13.0 103.7�11.4 103.1�11.4 104.4�11.2
aDPP ¼ Diabetes Prevention Program; OLDW ¼ OptumLabs Data Warehouse; SD ¼ standard deviation.
bSI conversion factors: To convert HDL cholesterol values to mmol/L, multiply by 0.0259; to convert glucose values to mmol/L, multiply by 0.0555; to convert triglyceride
values to mmol/L, multiply by 0.0113.
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between these contexts (ie, there was essen-
tially no data missingness in the DPP), dif-
ferences in patient enrollment in the 2
settings, and differences in outcome defini-
tion and ascertainment.23 Thus, we refit the
OLDW model to the DPP, using the same
variables and interaction terms. Consistent
with methodological recommendations,24,25

all 3 DPP arms were used because research
has shown that overfitting to a control arm
can induce spurious heterogeneity of treat-
ment effects.26-28 The treatment effect was
then estimated by incorporating this linear
predictor into a Cox proportional hazards
model with the following terms: treatment
(metformin or DPP lifestyle modification),
the linear predictor of risk from the refitted
model, and (potentially) an interaction be-
tween these to account for important
changes in relative risk reduction across
different levels of baseline risk. Based on a
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
www.mayoclinicproceedings.org
previous analysis,8 we anticipated a risk-by-
treatment interaction with metformin phar-
macotherapy and a consistent relative effect
with the DPP lifestyle modification, but we
examined interactions for both treatment
arms. We also performed a sensitivity anal-
ysis, examining the risk-by-treatment inter-
actions, stratifying the DPP by the OLDW
model without any refitting, and examining
the distribution of predicted effects using
this model.

Incorporation of Decision Support in EHR
To facilitate use in clinical decision making,
based on patient and provider focus groups
and interviews, we implemented the model
in 2 different ways: (1) a hard coded calcula-
tion in an Allscripts EHR, and (2) a cloud-
hosted SMART on FHIR29 app that can be
incorporated into any EHR, leveraging inter-
operability standards recently promulgated
16/j.mayocp.2021.09.012 707
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TABLE 2. Final Model for Incident Diabetesa,b,c

Hazard Ratio Lower Upper Hazard Ratio Lower Upper

Age, per 10 y 1.08 1.08 1.08 Adjustments for missing data

Female sex 1.21 1.19 1.23 Race (missing) vs White 0.16 0.07 0.38

Black vs White 2.73 1.32 5.64 Smoking (missing) vs never 1.08 1.06 1.11

Asian vs White 0.01 0.00 0.02 HbA1c (missing) 0.75 0.74 0.77

Current smoker vs never 1.22 1.19 1.24 Fasting plasma glucose (missing) 1.03 0.99 1.07

Former smoker vs never 1.11 1.09 1.13 Triglycerides (missing) 1.08 1.03 1.12

Hypertension 1.23 1.21 1.25 BMI (missing) 1.22 1.18 1.26

HbA1c, per 0.1% 1.24 1.18 1.29 Systolic blood pressure (missing) 1.22 1.17 1.26

Fasting plasma glucose, per 10 mg/dL 1.29 1.29 1.29 HDL cholesterol (missing) 1.23 1.17 1.28

Triglycerides, per 10 mg/dL 1.01 1.01 1.02 AA � BMI (missing) 0.97 0.91 1.03

BMI, per 5 units 1.24 1.24 1.24 AA � HbA1c (missing) 1.56 1.48 1.64

Systolic blood pressure, per 20 mm Hg 1.05 1.05 1.05 Asian � BMI (missing) 0.77 0.70 0.84

HDL cholesterol, per 10 mg/dL 0.85 0.85 0.85 Asian � HbA1c (missing) 2.03 1.85 2.23

Black � BMI 0.98 0.98 0.99 Race (missing) � BMI 0.99 0.99 1.00

Black � HbA1c 0.95 0.84 1.07 Race (missing) � BMI (missing) 0.82 0.77 0.87

Asian � BMI 1.00 0.99 1.01 Race (missing) � HbA1c 1.40 1.22 1.61

Asian � HbA1c 2.32 1.91 2.83 Race (missing) � HbA1c (missing) 1.46 1.37 1.55
aAA ¼ Black/African American; BMI ¼ body mass index; HbA1c ¼ hemoglobin A1c; HDL ¼ high-density lipoprotein.
bSI conversion factors: To convert HDL cholesterol values to mmol/L, multiply by 0.0259; to convert glucose values to mmol/L, multiply by 0.0555; to convert triglyceride
values to mmol/L, multiply by 0.0113.
cBaseline hazard at S years (S0): 1 year ¼ 0.02470, 2 years ¼ 0.04757, 3 years ¼ 0.07044.
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by the US office of the National Coordinator
of Health Information.

IRB Approval
This study was reviewed and approved by
the Tufts Health Sciences IRB before access-
ing the deidentified data from the DPP and
OLDW data sets.

RESULTS
Figure 1 shows the development of the deri-
vation and validation OLDW data sets.
Approximately 1.1 million people with pre-
diabetes from the Northeast, South, and
West were included in the derivation cohort,
and a similar number from the Midwest were
included in the validation cohort. Character-
istics of these cohorts are shown in Table 1.

Model Development and Validation: Risk
Stratification
The coefficients for each of the variable and
interaction terms included in the model are
shown in Table 2. The optimism-corrected
C statistic on the derivation sample was
Mayo Clin Proc. n April 202
0.73. When the model was tested on the vali-
dation cohort, the C statistic was slightly
higher at 0.76. Calibration on the validation
cohort was very good (Figure 2). Harrell’s E
statistic was 1.63% and the calibration inter-
cept and slope were �0.27 and 1.12, respec-
tively. Among the 268,959 patients in the
lowest-risk quartile, the predicted diabetes
rate was 3.1% (95% CI, 3.0% to 3.2%), while
the observed rate was 1.8% (95% CI, 1.7% to
1.9%); among the 268,958 patients in the
highest-risk quartile, the predicted diabetes
rate was 19.2% (95% CI, 18.6% to 19.9%),
while the observed rate was 19.6% (95%
CI, 19.4% to 19.8%).

Calculation of Relative Treatment Effects in
the DPP Study
Prior work demonstrated a consistent relative
treatment effect across risk groups with the
DPP lifestyle modification and an increasing
relative effect with progressively higher risk
for metformin pharmacotherapy.8 Using the
OLDW model refit to the DPP data
(Supplemental Table 2, available online at
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
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http://www.mayoclinicproceedings.org; C sta-
tistic, 0.719), we confirmed the absence of a
treatment-by-risk interaction for lifestyle
modification (P for interaction ¼ .68); thus,
we applied a constant relative risk reduction
in the prediction model (hazard ratio [HR],
0.43; 95% CI, 0.35 to 0.53) to estimate the dia-
betes outcome with lifestyle modification. We
also confirmed the presence of a treatment-by-
risk interaction with metformin pharmaco-
therapy (P for interaction ¼ .003; using the
continuous risk on the logit scale): low-riskpa-
tients had outcomes withmetformin that were
similar to usual care (in lowest-risk quarter,
observed HR, 1.1; 95% CI, 0.61 to 2.0), and
high-risk patients have outcomes with metfor-
min thatwere similar to theDPP lifestylemodi-
fication (in highest-risk quarter, observed HR,
0.45; 95% CI, 0.35 to 0.59).

Figure 3 shows observed and predicted
benefits across quartiles for the DPP for
both lifestyle and metformin therapy. A
look-up table showing the relative risk reduc-
tion with metformin for each level of risk is
shown in Supplemental Table 3 (available
online at http://www.mayoclinicproceedings.
org), truncated at a low value of 0% (no
harm or benefit) and a high value of 60%.

Distribution of Risks and Benefits in OLDW
The overall average 3-year predicted risk for
developing diabetes for patients in the valida-
tion OLDW cohort was 9.0%, 3.9%, and 6.0%
with usual care, the DPP lifestyle diabetes,
and metformin therapy, respectively. For life-
stylemodification, 53%of the total preventable
cases of diabetes couldbepreventedby treating
the 25% of patients at highest risk; 76%, by
treating the 50% at highest risk; and 91%, by
treating the 75% at highest risk. Formetformin
therapy, 73% of the total preventable cases
could be prevented by treating the 25% of pa-
tients at highest risk; 93%, by treating the
50% at highest risk; and 100%, by treating
the 75% at highest risk.

Sensitivity Analyses
Direct application of the OLDW model (not
refit) on the DPP showed a moderately
diminished discrimination (C statistic ¼
0.68). There was no risk-by treatment
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
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interaction with lifestyle (P¼.69). The risk-
by-treatment interaction with metformin
therapy was qualitatively similar to that
with the refit model (P¼.08), and the distri-
bution of predicted benefits with this model
was also similar. For lifestyle modification,
53% of the total cases of preventable diabetes
could be prevented by treating the 25% of
patients at highest risk; 76%, by treating
the 50% at highest risk. For metformin ther-
apy, 65% of the total cases of preventable
diabetes could be prevented by treating the
25% of patients at highest risk; 86%, by
treating the 50% at highest risk.

Implementation of the Final Model
Figure 4 shows the user interface of the
SMART app in an EHR. Predictions are
generated automatically based on the data
available and retrieved from the patient’s re-
cord, using appropriate indicators in the
model for missingness when necessary.

DISCUSSION
We present the TuftsePredictive Analytics
and Comparative Effectiveness DPP risk
model, an EHR-compatible model that pre-
dicts diabetes onset based on 11 variables
routinely collected in clinical practice. A ma-
jor strength of the risk model is that it was
derived on the OLDW, which reflects people
with prediabetes defined by the most
commonly used ADA criteria, from hetero-
geneous EHRs and more than 30 US health
care systems. The risk model derived in 3
US Census regions performed very well in
a geographically distinct cohort. Compatible
risk-specific estimates of treatment effect
were then obtained directly from the DPP.
By prioritizing care based on the risk for dia-
betes, this “hybrid” model might help opti-
mize the efficiency of diabetes prevention:
treating just the highest-risk half of people
with prediabetes would capture 77% of the
benefit of population-wide lifestyle modifica-
tion or 93% of the benefit of population-wide
metformin pharmacotherapy. This is impor-
tant because lifestyle programs are resource
intensive and require a high level of commit-
ment from the patient. Pharmacotherapy is
not without adverse effects and
16/j.mayocp.2021.09.012 709
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FIGURE 2. Calibration curves. The figure on the left depicts the observed vs predicted 3-year rate of developing diabetes in the
1,076,983 million patients in the derivation cohort (Northeast, South, and West regions) divided into equal-sized tenths. The figure on
the right depicts the observed vs predicted 3-year rate of developing diabetes in the 1,075,833 million patients in the validation cohort
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overtreatment should be avoided, especially
in low-risk patients who do not appear to
benefit.

The issue of how to address prediabetes
has grown in importance as broader diabetes
screening has been recommended and pro-
moted.13,30 For every patient with diabetes
identified, screening identifies 6 patients
with prediabetes; health systems are thus
confronted with a growing number of pa-
tients who have prediabetes, without the ca-
pacity to treat everybody, reserving limited
resources to improving cardiometabolic con-
trol for patients with diabetes.

Although the ADA has lowered the
HbA1c and FG thresholds to define prediabe-
tes,9,31 some have argued that the value of
medicalizing prediabetes and defining an
ever-growing proportion of the population
as diseased is of dubious value.5 Most pa-
tients who are classified as prediabetic do
not develop diabetes even in a decade, and
risks for developing end-organ damage are
low for those developing diabetes later in
life.32 Risk stratification offers an approach
that promises more focused resources specif-
ically on those who are likely to benefit.
Mayo Clin Proc. n April 202
Although our prior research results provided
proof of concept that risk stratification could
support providers and health systems priori-
tize these patients,8 the present EHR-
compatible model is designed to be used at
point of care, and it has been incorporated
into the EHRs at several locations in the
United States.

A long-standing concern regarding limi-
tations of randomized clinical trial results
is that they might not be applicable to
“real-world” populations when there is
nonrandom selection into the trial and treat-
ment effects are heterogeneous.33 Here, for
example, we found that the real-world at-
risk population was at substantially lower
overall risk than patients included in the
DPP and that treatment effects were risk
dependent. The lower overall risk in the
OLDW cohort is the result of multiple fac-
tors, including: (1) different inclusion
criteria for the DPP (including a high BMI
and elevated 2-hour glucose level after a
75-g glucose load), (2) differences in the dis-
tribution of risk variables (see Table 1), and
(3) different outcome ascertainment, which
is substantially more rigorous in the trial
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
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FIGURE 3. Observed and predicted treatment effects in the Diabetes Prevention Program (DPP) Study across risk groups. Green dot
and bar (95% confidence interval) are observed treatment effect. Blue dot and bar are predicted treatment effect. Figure 3 depicts the
observed treatment effects (green dots) in patients in the DPP Study when patients are stratified into quarters based on predicted risk
for the DPP lifestyle modification intervention (left) and for metformin (right). Predicted effects across risk groups are shown in blue.
The top set of graphs displays relative effects and shows a consistency of effects across risk groups for lifestyle modification but
heterogeneous treatment effects for metformin (P¼.003). The bottom graphs show effects on the absolute risk difference scale,
which shows increasing benefits for higher-risk patients for both interventions.
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setting. Cross-design synthesis has been pro-
posed as a means of addressing the potential
problems of external validity of trial evi-
dence by combining the strengths of both
designs; observational designs to capture
the full range of patients and randomized tri-
als for unbiased treatment effects.34,35

Beyond differences in risk, a related concern
is whether the relative effects seen in the trial
would apply in routine clinical care, for
which the patient/provider commitment
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
www.mayoclinicproceedings.org
may be less than ideal. We believe it is
appropriate to provide these estimates in
shared decision making because they esti-
mate effects that patients should anticipate
if they have trial-like adherence to the
interventions.

Although several different methods
for cross-design synthesis have been
proposed,36,37 all approaches depend on
the ability to adjust results based on patient
characteristics across designs. A seldom
16/j.mayocp.2021.09.012 711
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discussed barrier is that variable definitions
and ascertainment can differ considerably
between clinical trial data and routinely
collected observational data. Our approach
was designed to address these barriers in a
pragmatic way, by estimating risk-specific
treatment effects in the clinical trial using
the same set of variables as used in the obser-
vational risk model. This approach was
driven in part by our novel aim, to predict ef-
fects in patients in clinical care based on
Mayo Clin Proc. n April 202
individual patient characteristics, rather
than estimating average treatment effects in
broad target populations.

A related issue that has received limited
attention is how to deploy clinical prediction
models in an EHR. There is a proliferation of
clinical prediction models; use of routinely
collected EHR data to automatically generate
individual patient predictions is an appealing
approach to disseminate these into the
clinic. However, most published clinical
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
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prediction models are developed on research
cohorts or clinical trials. Predictor variables
collected in a trial are not consistently and
rigorously captured in the EHR. Recent
work has highlighted that heterogeneity in
predictor measurement across different set-
tings can substantially degrade model
performance.23,38

Finally, use of trial or registry data
cannot yield a model robust to missing
values in the EHR database used for clinical
prediction because the pattern of missing-
ness present across research and EHR envi-
ronments is expected to differ. The usual
approaches addressing potential bias arising
from missingness (eg, multiple imputation)
are not designed to cope with missingness
in variables used to generate predictions.
These issues guided our decision to derive
separate models in the EHR and trial setting,
using a common set of variables that were
well ascertained in both settings.

There are some limitations. The methods
we used for “cross-walking” between the 2
very different types of data (trial and EHR
real-world data) potentially introduce esti-
mation error. Ideally, individualized treat-
ment effects would be estimated on
databases that combine the advantages of
these different data sources: unbiased effect
estimates through randomization, meticu-
lous outcome ascertainment, consistency of
predictors across derivation and implemen-
tation populations, and large heterogeneous
populations. Improving the quality of data
collection in routine care and integrating
randomized trials into routine care39-41 may
narrow the gap between trial and real-
world data. That oral glucose tolerance
testing was used both for entry criteria and
end point ascertainment presumably in the
DPP trial contributed to the higher risk in
the DPP trial cohort compared with the
OLDW cohort. Lorenzo et al42 demonstrated
that the sensitivity of HbA1c and/or FG levels
in the diagnosis of prediabetes and diabetes
is relatively low (76% and 52%, respec-
tively). Because the results of oral glucose
tolerance testing are not generally available
for most patients in routine care, we were
unable to adjust for these differences.
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
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Conversely, incorporating the use of phar-
macotherapy into our identification of the
outcome may have caused some misclassifi-
cation of patients without diabetes. Howev-
er, we anticipate that this rate is very low.
There were also other variables known to
be predictors of diabetes onset (eg, waist to
hip ratio) that are not well collected in
routine care and so were not considered for
our model. Finally, although the OLDW is
representative of the commercially insured
population, some caution is recommended
in extrapolating the results beyond this.

Despite these limitations, we obtained
qualitatively consistent risk-stratified results
in the DPP regardless of which risk model
was used: consistency of relative treatment ef-
fects of lifestyle modification across all levels
of risk and heterogeneous relative treatment
effects with metformin, with much stronger
relative effects in higher-risk patients.
CONCLUSION
Although the number of people in the
United States who have prediabetes and
qualify for diabetes prevention programs
could potentially overwhelm health care sys-
tems, these patients have substantial varia-
tion in their risk for developing diabetes
and in their likelihood of benefiting from
prevention therapies. Incorporation of a
tool into the EHR to support automated
risk stratification of patients in routine clin-
ical care, by predicting individualized bene-
fits, can support shared decision making
and prioritize patients who are most likely
to benefit, when capacity might be limited.
ACKNOWLEDGMENTS
Research reported in this publication was
funded through a Patient-Centered Out-
comes Research Institute award (DI-1604-
35234). The statements in this publication
are solely the responsibility of the authors
and do not necessarily represent the views
of the Patient-Centered Outcomes Research
Institute, its Board of Governors, or Method-
ology Committee. A.G. Pittas is supported in
part by generous donations to the Tupper
Research Fund at Tufts Medical Center.
16/j.mayocp.2021.09.012 713

https://doi.org/10.1016/j.mayocp.2021.09.012
http://www.mayoclinicproceedings.org


MAYO CLINIC PROCEEDINGS

714
SUPPLEMENTAL ONLINE MATERIAL
Supplemental material can be found online at
http://www.mayoclinicproceedings.org. Sup-
plemental material attached to journal articles
has not been edited, and the authors take re-
sponsibility for the accuracy of all data.
Abbreviations and Acronyms: AA, Black/African Amer-
ican; ADA, American Diabetes Association; BMI, body mass
index; DPP, Diabetes Prevention Program; EHR, electronic
health record; FG, fasting glucose; HbA1c, hemoglobin A1c;
HDL, high-density lipoprotein; HR, hazard ratio; HTN, hy-
pertension; IRB, institutional review board; OLDW,
OptumLabs Data Warehouse

Affiliations (Continued from the first page of this
article.): (A.P.), Tufts Medical Center, Boston, MA; Alle-
gheny Health Network, Pittsburgh, PA (F.C.); Mercy Health,
St. Louis, MO (C.K.); Department of Public Health, Erasmus
MC University Medical Center, Rotterdam, the Netherlands
(D.v.K.); and American Medical Group Association, Alexan-
dria, VA (E.C., J.C.).

Grant Support: This work was supported by a Patient-
Centered Outcomes Research Institute contract (DI-1604-
35234). The funder had no role in the conduct of this
research or the decision to publish the results.

Potential Competing Interests: The authors report no
competing interests.

Data Previously Presented: A preliminary report of this
work was previously published on medRxiv on January 8,
2021. https://doi.org/10.1101/2021.01.06.21249334

Correspondence: Address to David M. Kent, MD, MS, Pre-
dictive Analytics and Comparative Effectiveness (PACE)
Center, Institute for Clinical Research and Health Policy
Studies, Tufts Medical Center, 800 Washington St, Box
63, Boston, MA 02111 (dkent1@tuftsmedicalcenter.org;
Twitter: @Tufts_PACE).

ORCID
David M. Kent: https://orcid.org/0000-0002-9205-5070
REFERENCES
1. Knowler WC, Barrett-Connor E, Fowler SE, et al; Diabetes Pre-

vention Program Research Group. Reduction in the incidence
of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med. 2002;346(6):393-403.

2. Centers for Disease Control and Prevention (CDC). Prediabetes -
your chance to prevent type 2 diabetes. https://www.cdc.gov/
diabetes/basics/prediabetes.html. Published 2020. Accessed
October 16, 2020.

3. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemi-
ology of type 2 diabetes mellitus–present and future perspec-
tives. Nat Rev Endocrinol. 2011;8(4):228-236.

4. Herman WH, Zimmet P. Type 2 diabetes: an epidemic requiring
global attention and urgent action. Diabetes Care. 2012;35(5):
943-944.

5. Yudkin JS, Montori VM. The epidemic of pre-diabetes: the med-
icine and the politics. BMJ. 2014;349:g4485.
Mayo Clin Proc. n April 202
6. Moin T, Li J, Duru OK, et al. Metformin prescription for insured
adults with prediabetes from 2010 to 2012: a retrospective
cohort study. Ann Intern Med. 2015;162(8):542-548.

7. Balk EM, Earley A, Raman D, Avendano EA, Pittas AG,
Remington PL. Combined diet and physical activity promotion
programs to prevent type 2 diabetes among persons at
increased risk: a systematic review for the Community Preven-
tive Services Task Force. Ann Intern Med. 2015;163(6):437-451.

8. Sussman JB, Kent DM, Nelson JP, Hayward RA. Improving dia-
betes prevention with benefit based tailored treatment: risk
based reanalysis of Diabetes Prevention Program. BMJ. 2015;
350:h454.

9. American Diabetes Association. Diagnosis and classification of
diabetes mellitus. Diabetes Care. 2010;33(suppl 1):S62-S69.

10. Watson J, Hutyra CA, Clancy SM, et al. Overcoming barriers to
the adoption and implementation of predictive modeling and
machine learning in clinical care: what can we learn from US ac-
ademic medical centers? JAMIA Open. 2020;3(2):167-172.

11. Wallace E, Johansen ME. Clinical prediction rules: challenges,
barriers, and promise. Ann Fam Med. 2018;16(5):390-392.

12. Diabetes Prevention Program Research Group. Design and
methods for a clinical trial in the prevention of type 2 diabetes.
Diabetes Care. 1999;22(4):623-634.

13. American Diabetes Association. Standards of medical care in
diabetes–2014. Diabetes Care. 2014;37(suppl 1):S14-S80.

14. McCoy RG, Nori VS, Smith SA, Hane CA. Development and
Validation of HealthImpact: An Incident Diabetes Prediction
Model Based on Administrative Data. Health Serv Res. 2016;
51(5):1896-1918.

15. Collins GS, Mallett S, Omar O, Yu LM. Developing risk predic-
tion models for type 2 diabetes: a systematic review of meth-
odology and reporting. BMC Med. 2011;9:103.

16. Wells BJ, Chagin KM, Nowacki AS, Kattan MW. Strategies for
handling missing data in electronic health record derived data.
EGEMS (Wash DC). 2013;1(3):1035.

17. Sisk R, Lin L, Sperrin M, et al. Informative presence and
observation in routine health data: a review of methodology
for clinical risk prediction. J Am Med Inform Assoc. 2021;28(1):
155-166.

18. Groenwold RHH. Informative missingness in electronic
health record systems: the curse of knowing. Diagn Progn Res.
2020;4:8.

19. Beck RW, Riddlesworth TD, Ruedy K, et al; DIAMOND Study
Group. Continuous glucose monitoring versus usual care in pa-
tients with type 2 diabetes receiving multiple daily insulin injec-
tions: a randomized trial. Ann Intern Med. 2017;167(6):365-374.

20. Zhu Y, Sidell MA, Arterburn D, et al. Racial/ethnic disparities in
the prevalence of diabetes and prediabetes by BMI: Patient
Outcomes Research To Advance Learning (PORTAL) multisite
cohort of adults in the U.S. Diabetes Care. 2019;42(12):2211-
2219.

21. Harrell FE. Regression Modeling Strategies: With Applications to
Linear Models, Logistic Regression, and Survival Analysis. New
York, NY: Springer-Verlag; 2001.

22. Kent DM, Steyerberg EW, van Klaveren D. Personalized evi-
dence based medicine: predictive approaches to heteroge-
neous treatment effects. BMJ. 2018;363:k4245.

23. Luijken K, Groenwold RHH, Van Calster B, Steyerberg EW, van
Smeden M. Impact of predictor measurement heterogeneity
across settings on the performance of prediction models: a mea-
surement error perspective. Stat Med. 2019;38(18):3444-3459.

24. Kent DM, Paulus JK, van Klaveren D, et al. The Predictive Ap-
proaches to Treatment Effect Heterogeneity (PATH) state-
ment. Ann Intern Med. 2020;172(1):35-45.

25. Kent DM, van Klaveren D, Paulus JK, et al. The Predictive Ap-
proaches to Treatment Effect Heterogeneity (PATH) state-
ment: explanation and elaboration. Ann Intern Med. 2020;
172(1):W1-W25.

26. Abadie A, Chingos M, West M. Endogenous stratification in
randomized experiments. Rev Econ Stat. 2018;100(4):567-580.
2;97(4):703-715 n https://doi.org/10.1016/j.mayocp.2021.09.012
www.mayoclinicproceedings.org

http://www.mayoclinicproceedings.org
https://doi.org/10.1101/2021.01.06.21249334
mailto:dkent1@tuftsmedicalcenter.org
https://twitter.com/@Tufts_PACE
https://twitter.com/@Tufts_PACE
https://orcid.org/0000-0002-9205-5070
https://www.cdc.gov/diabetes/basics/prediabetes.html
https://www.cdc.gov/diabetes/basics/prediabetes.html
https://doi.org/10.1016/j.mayocp.2021.09.012
http://www.mayoclinicproceedings.org


PREDICTING INDIVIDUALIZED BENEFITS OF DIABETES PREVENTION
27. Burke JF, Hayward RA, Nelson JP, Kent DM. Using internally devel-
oped risk models to assess heterogeneity in treatment effects in
clinical trials. Circ Cardiovasc Qual Outcomes. 2014;7(1):163-169.

28. van Klaveren D, Balan TA, Steyerberg EW, Kent DM. Models
with interactions overestimated heterogeneity of treatment ef-
fects and were prone to treatment mistargeting. J Clin Epidemiol.
2019;114:72-83.

29. Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB.
SMART on FHIR: a standards-based, interoperable apps plat-
form for electronic health records. J Am Med Inform Assoc.
2016;23(5):899-908.

30. Siu AL; U S Preventive Services Task Force. Screening for
abnormal blood glucose and type 2 diabetes mellitus: U.S. Pre-
ventive Services Task Force Recommendation Statement. Ann
Intern Med. 2015;163(11):861-868.

31. Genuth S, Alberti KG, Bennett P, et al. Expert Committee on
the Diagnosis and Classification of Diabetes Mellitus. Follow-
up report on the diagnosis of diabetes mellitus. Diabetes
Care. 2003;26(11):3160-3170.

32. Vijan S, Sussman JB, Yudkin JS, Hayward RA. Effect of patients’
risks and preferences on health gains with plasma glucose level
lowering in type 2 diabetes mellitus. JAMA Intern Med. 2014;
174(8):1227-1234.

33. Longford NT. Selection bias and treatment heterogeneity in
clinical trials. Stat Med. 1999;18(12):1467-1474.

34. Droitcour J, Silberman G, Chelimsky E. Cross-design synthesis: a
new form of meta-analysis for combining results from random-
ized clinical trials and medical-practice databases. Int J Technol
Assess Health Care. 1993;9(3):440-449.
Mayo Clin Proc. n April 2022;97(4):703-715 n https://doi.org/10.10
www.mayoclinicproceedings.org
35. Kaizar EE. Estimating treatment effect via simple cross design
synthesis. Stat Med. 2011;30(25):2986-3009.

36. Cole SR, Stuart EA. Generalizing evidence from randomized
clinical trials to target populations. Am J Epidemiol. 2010;
172(1):107-115.

37. Varadhan R, Henderson NC, Weiss CO. Cross-design synthesis
for extending the applicability of trial evidence when treatment
effect is heterogeneous: part I. Methodology. Commun Stat Case
Stud Data Anal Appl. 2017;2(3-4):112-126.

38. Luijken K, Wynants L, van Smeden M, Van Calster B,
Steyerberg EW, Groenwold RHH, Collaborators. Changing
predictor measurement procedures affected the performance
of prediction models in clinical examples. J Clin Epidemiol.
2020;119:7-18.

39. Vickers AJ, Scardino PT. The clinically-integrated randomized
trial: proposed novel method for conducting large trials at
low cost. Trials. 2009;10:14.

40. Simon KC, Tideman S, Hillman L, et al. Design and implemen-
tation of pragmatic clinical trials using the electronic medical re-
cord and an adaptive design. JAMIA Open. 2018;1(1):99-106.

41. van Staa TP, Dyson L, McCann G, et al. The opportunities and
challenges of pragmatic point-of-care randomised trials using
routinely collected electronic records: evaluations of two
exemplar trials. Health Technol Assess. 2014;18(43):1-146.

42. Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ,
Haffner SM. A1C between 5.7 and 6.4% as a marker for iden-
tifying pre-diabetes, insulin sensitivity and secretion, and cardio-
vascular risk factors: the Insulin Resistance Atherosclerosis
Study (IRAS). Diabetes Care. 2010;33(9):2104-2109.
16/j.mayocp.2021.09.012 715

https://doi.org/10.1016/j.mayocp.2021.09.012
http://www.mayoclinicproceedings.org

	An Electronic Health Record–Compatible Model to Predict Personalized Treatment Effects From the Diabetes Prevention Program ...
	Patients and Methods
	Overview
	Data Sources and Participants
	Outcome
	Candidate Predictors
	Missing Data
	Model Development
	Model Validation
	Estimating Risk-Specific Treatment Effects
	Incorporation of Decision Support in EHR
	IRB Approval

	Results
	Model Development and Validation: Risk Stratification
	Calculation of Relative Treatment Effects in the DPP Study
	Distribution of Risks and Benefits in OLDW
	Sensitivity Analyses
	Implementation of the Final Model

	Discussion
	Conclusion
	Acknowledgments
	Supplemental Online Material
	References


