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Objective. To estimate the risk of a patient with osteoarthritis (OA) developing chronic opioid use (COU) within
1 year of a new opioid prescription by using electronic health record (EHR) data and predictive models.

Methods. We used EHR data from 13 health care organizations to identify patients with OA with an opioid prescrip-
tion between March 1, 2017 and February 28, 2019 and no record of opioid use in the prior 6 months. We evaluated 4
machine learning models to estimate patients’ risk of COU (≥3 prescriptions ≥84 days, maximum gap ≤60 days). We
also estimated the transportability of models to organizations outside the training set.

Results. The cohort consisted of 33,894 patients with OA, of whom 2,925 (8.6%) developed COU within 1 year. All
models demonstrated good discrimination, with the best-performing model (random forest) achieving an area under
the receiver operating characteristic curve (AUC) of 0.728 (95% CI 0.711–0.745), but the simplest regression model
performed nearly as well (AUC 0.717 [95% CI 0.699–0.734]). Predicted risk deciles spanned a range of 2% risk for
the 10th percentile to 18% risk for the 90th percentile for well-calibrated models. Models showed highly variable dis-
crimination across organizations (AUC 0.571–0.842).

Conclusions. We found that EHR-based predictive models could estimate the risk of future COU among patients
with OA to help inform care decisions. Black-box methods did not have significant advantages over more interpretable
models. Care should be taken when extending all models into organizations not included in model training because of a
high variability in performance across held-out organizations.

INTRODUCTION

Osteoarthritis (OA) is the leading cause of chronic noncancer

pain, affecting more than 32 million Americans in 2014 (1,2).

Although some patients may successfully control pain using

over-the-counter analgesics or other therapies, estimates sug-

gest that nearly a quarter of patients with OA may be treated with

prescription opioids in a given year (3). Chronic opioid use (COU)

carries significant risks for patients, including the potential for opi-

oid dependence, addiction, or overdose (4–6). In addition,

patients often develop tolerance, requiring larger doses to main-

tain the same level of pain control. Consequently, initiation of

chronic opioid therapy can be especially perilous because it may

be challenging to later discontinue use. For these and other rea-

sons, COU to treat chronic pain, including for patients with OA,

has come under increasing scrutiny (7) and is recommended

against in most circumstances (8). Therefore, tools for estimating

the risk that a patient will develop COU before opioid initiation

would assist in shared decision-making about treatment options

for OA pain.
Clinical predictive models (CPMs), which are statistical

techniques that leverage large data sets and computational
approaches to identify trends and relationships regarding
future health-related outcomes, may help to identify patients
at elevated risk of COU. Similar models have been developed
to predict a variety of outcomes, including opioid overdose
(9,10), and clinical guidelines often incorporate such models
(11–13), although, to our knowledge, none has been devel-
oped to predict COU among a population of primary care
patients with OA.

We developed and evaluated a set of CPMs using electronic
health record (EHR) data to estimate the risk that a given patient
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with OA, if prescribed an opioid, will experience a period of COU

within 1 year. These models spanned a range of complexities,

which allowed us to compare tradeoffs between model accuracy

and interpretability and to recommend the best modeling approach

to balance these competing concerns. We also leveraged the mul-

ticenter nature of this data set to evaluate the transportability of

models to new health care organizations (HCOs), providing an esti-

mate of the range of expected model performance across settings.

MATERIALS AND METHODS

Ethics statement. This study received institutional review
board (IRB) exemption status from WCG IRB.

Data source. EHR data (including outbound billing claims)
from 13 geographically and EHR vendor-diverse American
Medical Group Association (AMGA) member HCOs were used.
Data were extracted, mapped, and normalized by Optum and
contained up to 5.75 years of longitudinal clinical data (January
1, 2015–September 31, 2020) for individual patients receiving
care within these multispecialty medical groups and integrated

health systems. Included patients reflected a broad and balanced
representation of US adults, e.g., by age, sex, race, ethnicity,
health insurance type, and rural or urban residence. These data
included patient demographics, encounters and procedures,
diagnoses from outbound claims and patient problem lists, labo-
ratory test results, clinical observations, and prescribed medica-
tions (e-prescriptions).

Study design.We used a retrospective cohort design, fol-
lowing patients with OA who were prescribed an opioid without
a recent (within prior 6 months) opioid prescription (Figure 1).
The primary outcome was whether the patient experienced a
period of COU (defined below) in the 12 months following the ini-
tial prescription. Here, opioids refer only to orally administered
opioid medications that are prescribed principally for pain treat-
ment, not including those prescribed as part of an inpatient hos-
pital visit, identified from electronic prescriptions in the EHR.
This list included oral formulations of opioids and combinations
with other medications (Supplementary Table 1, available on
the Arthritis Care & Research website at http://onlinelibrary.
wiley.com/doi/10.1002/acr.25013). Tramadol was excluded
from this definition because of significant differences in pharma-
cology, provider attitudes, and prescribing patterns (7,8,14).
Patients who experienced a period of COU were compared with
patients in the same cohort who did not develop COU in order to
predict COU using EHR-derived variables.

The study population (Table 1) consisted of adult patients
(ages 18–89 years) who received at least 1 opioid prescription
during the index period (March 1, 2017–February 28, 2019) with
no opioid prescription within the prior 6 months and who had
diagnosed OA on or before the index prescription date. OA was
identified through the presence of 2 or more ambulatory visits with
an OA diagnosis for any joint on a billing claim or if OA was on the
patient’s problem list, with diagnoses defined through Interna-
tional Classification of Diseases, Ninth Revision (ICD-9) and ICD-
10 diagnosis codes (Supplementary Table 2, available on the

15 mo. 
post index

date

15 mo. 
pre index

date

Baseline period: ascertain predictors Outcome period: iden�fy chronic opioid use

Any 3+ month
period of use

x

6+ month clean period
with no opioid use

Index date: first opioid Rx (03/01/2017 – 02/28/2019)

Ac�vity required (3+ months a�er index)Ac�vity required

washout

12 mo.12 mo.

Figure 1. Study schema. Patients were required to have evidence of activity in the electronic health record at least 1 year before the index date and at
least 3 months later than the index date. Patients were also required to have at least a 6-month clean period, indicating that no opioid prescriptions were
recorded immediately before the index date. Baseline characteristics were ascertained using data from the 15 months before the index date. The period
of chronic use could be initiated on the index date or at any point within the 1-year outcome period. A 3-month washout period was included to capture
prescriptions relevant for chronic use periods initiated near the end of the 12-month outcome period. Rx = prescription.

SIGNIFICANCE & INNOVATIONS
• We used electronic health record data to predict

whether a patient with osteoarthritis will develop
chronic opioid use within 1 year of their first opioid
prescription, allowing models to be integrated into
the point of care to inform shared decision-making
between patients and providers.

• We compared both interpretable (e.g., logistic
regression) and black-box (e.g., random forest)
models to determine whether improvements in
performance justify loss of transparency.

• We leveraged a multiorganization data set to evalu-
ate model performance when applied to new
organizations.
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Arthritis Care & Research website at http://onlinelibrary.wiley.
com/doi/10.1002/acr.25013). Patients with no EHR activity
(ambulatory encounters, clinical observations, laboratory testing
results, or prescribed medications) at least 12 months before the

index date were excluded to ensure adequate predictor ascer-
tainment (Figure 1). We also required activity at least 3 months
after the index date to exclude patients who did not have evi-
dence of ongoing care following the initial prescription. Patients
with a non-OA chronic pain condition for which opioids are com-
monly prescribed (diagnosis of malignant neoplasms, sickle cell
disease, or cystic fibrosis during baseline or follow-up) or those
receiving palliative care or hospice services were also excluded.
This resulted in a study population of 33,894 patients
(Supplementary Figure 1, available on the Arthritis Care &
Research website at http://onlinelibrary.wiley.com/doi/10.1002/
acr.25013).

Definition of outcome. The primary clinical end point of
interest was COU, here defined as at least 1 period of chronic
use within 12 months of the index date. We defined a period of
chronic use as any period with at least 3 opioid prescriptions,
spanning at least 84 days with a maximum gap between consec-
utive prescriptions of no more than 60 days. This definition was
developed in a data-driven manner to closely match the most
cited (15,16) definition of COU (90 days of supplied opioids, with
<30-day gap in supply, using pharmacy claims data) while using
only data that are reliably captured in the EHR. We validated this
definition by examining a subset of patients with overlapping
EHR and pharmacy claims data and then comparing our EHR-
based definition with the claims-based definition (Supplementary
Table 3, available on the Arthritis Care & Research website at
http://onlinelibrary.wiley.com/doi/10.1002/acr.25013).

In our definition, prescriptions were excluded if they were
prescribed within 3 days before or following an inpatient visit,
observational stay, or surgical encounter of any kind. Prescrip-
tions were also excluded if they could be clearly associated with
an acute injury or other acute pain episode (defined by diagnosis
codes on the same day as the index prescription (Supplementary
Table 2, available on the Arthritis Care & Research website at
http://onlinelibrary.wiley.com/doi/10.1002/acr.25013). This was
done to maximize the likelihood that these prescriptions were pre-
scribed for OA related pain, rather than unrelated conditions.

Predictive model development. We developed 4 sepa-
rate models to predict risk of COU: logistic regression (LR), regu-
larized logistic regression using elastic net (EN), support vector
machine (SVM), and a random forest classifier (RF). Other than
the differences in preprocessing described in the following sec-
tion, all models were tuned, trained, and evaluated on the same
data sets, using the same validation procedure.

The data set was randomly split into training (66%) and test-
ing (34%) subsets, stratified on the outcome of COU. Within the
training set, a folded cross-validation approach was used both
for tuning and for internally validated estimates of performance
throughout model development. Models were tuned using a
100-point, 5-fold pseudorandom grid search, and the parameter

Table 1. Select baseline population characteristics stratified by
incident chronic opioid use*

Characteristics
Nonchronic opioid
use (n = 30,969)

Chronic opioid
use (n = 2,925)

Age, years, mean ± SD 62.4 ± 11.8 61.4 ± 11.8
Male, no. (%) 11,782 (38.0) 1,134 (38.8)
Race, no. (%)
White or Caucasian 26,903 (86.9) 2,451 (83.8)
Black or African
American

1,957 (6.3) 217 (7.4)

Other 592 (1.9) 58 (2.0)
Unknown race 1,517 (4.9) 199 (6.8)

Ethnicity, no. (%)
Not Hispanic, Latino,
or Spanish origin

27,125 (87.6) 2,556 (87.4)

Hispanic, Latino, or
Spanish origin

1,109 (3.6) 91 (3.1)

Unknown ethnicity 2,735 (8.8) 278 (9.5)
Smoking status, no. (%)
Previously smoked 9,111 (29.4) 898 (30.7)
Current smoker 4,486 (14.5) 695 (23.8)
Never smoked 14,210 (45.9) 1,030 (35.2)
Unknown 1,772 (5.7) 195 (6.7)
Not currently
smoking

1,390 (4.5) 107 (3.7)

Insurance type, no. (%)
Commercial 12,415 (40.1) 960 (32.8)
Medicare 14,922 (48.2) 1,501 (51.3)
Other
nongovernment

1,967 (6.4) 159 (5.4)

Medicaid 1,288 (4.2) 273 (9.3)
Other government 377 (1.2) 32 (1.1)

Median income in ZIP
code,US$,mean ± SD

59,133.90
± 19,570.10

56,125.20
± 18,165.40

Number of PCP office
visits, mean ± SD

4.1 ± 4.8 3.6 ± 5.1

Number of ER visits,
mean ± SD

0.6 ± 1.6 0.5 ± 1.6

Depression Dx, no. (%) 6,958 (22.5) 889 (30.4)
Anxiety Dx, no. (%) 6,853 (22.1) 890 (30.4)
Categorized pain score, no. (%)†
Mild 6,677 (21.6) 483 (16.5)
Moderate 3,614 (11.7) 368 (12.6)
Severe 3,849 (12.4) 418 (14.3)
Missing for health
care organization

5,575 (18.0) 553 (18.9)

Missing for
individual

11,254 (36.3) 1,103 (37.7)

Hip OA Dx, no. (%)‡ 3,691 (11.9) 394 (13.5)
Knee OA Dx, no. (%)‡ 13,289 (42.9) 1,189 (40.6)
ShoulderOADx, no. (%)‡ 3,707 (12.0) 315 (10.8)
Other OA Dx, no. (%)‡ 12,646 (40.8) 1,261 (43.1)
Polyarthritis Dx, no. (%) 3,430 (11.1) 474 (16.2)
Joint replacement Px,
no. (%)

5,212 (16.8) 203 (6.9)

* Dx = diagnosis; ER = emergency room; OA = osteoarthritis;
Px = procedure; PCP = primary care provider.
† Numeric pain score was categorized into levels: mild (0–5), moder-
ate (6–7), and severe (8–10).
‡ Conditions are nonexclusive, so percentages will not sum to 1.

OA PATIENTS AND CHRONIC OPIOID USE PREDICTION 3
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values resulting in the highest mean area under the receiver oper-
ating characteristic curve (AUC) were selected for the final mod-
els. For internal cross-validation, a 10-fold, 3-repeat strategy
was used to estimate model performance. The testing set was
used for validation of the models after development was com-
pleted. This validation was separate from the nonrandom valida-
tion used in the transportability analysis.

Predictor selection and preprocessing. We extracted
92 features for each patient, including demographics, socioeco-
nomic status, chronic condition diagnoses, prescriptions, clinical
measures, nonpharmacologic interventions, and health care utili-
zation (Supplementary Table 4, available on the Arthritis Care &
Research website at http://onlinelibrary.wiley.com/doi/10.1002/
acr.25013). All features were captured from EHR data before or
on the index date. Any feature with less than 1% prevalence in
the population was eliminated to minimize overfitting to sparse
features. Similarly, any categorical feature classes with less than
1% prevalence were aggregated into a single class. No other fea-
ture selection (e.g., univariate regression) was performed before
model fitting to minimize risk of bias (17).

In this data set, only patient-reported pain scores had significant
missingness (54.5%), whereas remaining features had a maximum
missingness of <5%. Numerical missing values (other than pain score)
were imputed using the median value from the remaining population,
whereas categorical missing values were assigned a factor level of
“unknown” or similar as appropriate for each feature. This imputation
impacted 8 variables and approximately 3% of patients. For pain
scores, the high degree and nonrandom nature of missingness made
imputation inappropriate. Because this variable was judged by the
authors as likely relevant to the primary outcome, we chose to cast
the numeric scale into 5 levels: mild (score 0–5), moderate (score
6–7), and severe (score 8–10) pain, missing at the individual level, or
missing at the level of theHCO; i.e., no patients from theHCO in ques-
tion had recorded pain scores. These levels were chosen to corre-
spond with pain-related loss of function (18) and to capture a
potentially important distinction between organizations that do not
include pain scores in a structured field in the EHR and patients who
could plausibly have had a pain score recorded but did not.

For modeling purposes, all categorical levels were encoded
using dummy variables. For regression models, numeric variables
were centered and scaled before model fitting. We found that
class balancing using up- or down-sampling, synthetic oversam-
pling, or similar methods did not have an impact on model dis-
crimination ability for most models, despite the relatively rare
outcome. SVM was the exception, in which class balancing was
required to ensure the model could be fit properly. We therefore
included a down-sampling step when fitting the SVM, whereas
all other models were fit using the unmodified data subset.

Model evaluation. Model performance was principally
evaluated using AUC to compare the discrimination ability of each

model. For purposes of calculating sensitivity and specificity, we
tuned the decision threshold (what level of predicted risk corre-
sponds with a “chronic” prediction) to maximize F-2 score for
each model individually (19). F-score is a harmonic mean of sensi-
tivity and precision; it can be used to select an optimal decision
threshold for a model in a systematic way that allows for fair com-
parison of other threshold-dependent metrics. We elected to use
the F-2 score (a weighted version of the F-score that gives prefer-
ence to sensitivity), because a false negative (labeling a chronic
patient as nonchronic) was considered more costly than a false
positive. Models were also compared using the calibration inter-
cept and slope, as calculated on the held-out testing set.

To explore the impact of potentially nonlinear relationships in
the RF model, we generated partial dependence plots (PDPs) for
key predictors (20). PDPs are created using simulated patients
to estimate the impact of changing a particular variable on the
predicted risk generated by the model. This provides an approxi-
mation of the relationship between a given predictor and the out-
come, and this estimate is nonparametric, allowing plots to
depict the arbitrary, nonlinear relationships characteristic of RF
models. These plots do not account for potential correlations
between variables, so they should be taken only as approxima-
tions of the actual relationships, which may be more complex.

In addition to direct comparison between models using the
above metrics, we performed a net-benefit analysis (21) to evalu-
ate whether the simplest (LR) or most complex (RF) models could
improve decision-making at various levels of risk tolerance
(Supplementary Figure 4, available on the Arthritis Care &
Research website at http://onlinelibrary.wiley.com/doi/10.1002/
acr.25013). This analysis compares the 2 models to 2 potential
default treatment strategies: withholding opioids from all patients
in order to avoid COU or providing opioids regardless of COU risk.
The net-benefit of using the predictive model is calculated in
terms of the percentage of the total patient population that would
otherwise develop COU across a range of risk tolerances.

Transportability analysis. Because this data set con-
sisted of patient records from disparate HCOs, mostly in different
US geographical regions, we were able to investigate the trans-
portability of the model across organizations. Transportability
refers to the tendency of a model to perform similarly when evalu-
ated on a new sample of data that was not included in model
training, such as performance in a new HCO or a later time period.
Selecting a subset of 11 HCOs with a suitable sample size of
patients (n > 750), we performed a “leave-one-group-out”
(LOGO) validation approach to estimate the performance of a
model when implemented in an HCO that was not included in
training. For each iteration of this analysis, the models were
trained on 10 of the 11 HCOs, and the held-out HCO was used
to evaluate performance. This process was repeated 11 times,
holding out a different HCO each time. To determine whether
the variance in model AUC across organizations was due to

MOHL ET AL4
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chance, we compared AUC of the same models trained and eval-
uated on 30 random data subsamples across all HCOs with the
size of each sample adjusted to match the sizes of the HCO spe-
cific samples.

RESULTS

Patient characteristic. We identified 33,894 patients
with OA and at least 1 opioid prescription during the study
period who met inclusion criteria (Supplementary Figure 1,
available on the Arthritis Care & Research website at http://
onlinelibrary.wiley.com/doi/10.1002/acr.25013). Of these,
2,925 (8.6%) met the definition of COU during the first
12 months after the index prescription. These patients differed
significantly from the nonchronic use patients across a wide
array of characteristics (Table 1), including demographic,
health-related, and socioeconomic factors. Among other differ-
ences, patients with chronic use were younger, had higher
rates of depression or anxiety, lower rates of joint replacement
before index, and were more likely to be current smokers.

Model performance. We developed and evaluated sev-
eral models with increasing degrees of complexity (and decreas-
ing interpretability) to evaluate the potential tradeoffs between
model parsimony and discrimination. All models performed rela-
tively well, with the AUC ranging from 0.72 to 0.76 across models
for internal cross-validation in the training set (3 repeats of
10 folds, 2,237 patients per fold), or 0.70 to 0.73 for the

held-out testing set (11,524 patients) (Table 2, Supplementary
Figure 2, available on the Arthritis Care & Research website at
http://onlinelibrary.wiley.com/doi/10.1002/acr.25013). The gap
between the most complex (RF) and least complex (LR) models
was significant but small, at an AUC of 0.03 using cross-validation
or 0.01 in the testing set. We set decision thresholds for each
model using F-2 score so that models could be compared
directly. Using these thresholds, the models performed similarly
in terms of sensitivity and specificity (Table 2).

We next evaluated calibration, which is the relationship
between the predicted patient risk and the observed likelihood
of the outcome, using the held-out testing data set. We generated
calibration plots to evaluate the proportion of patients with COU
within different risk deciles. Predicted risk deciles spanned a clin-
ically relevant range (10th percentile to 90th percentile for LR
0.02–0.18; EN 0.03–0.16; RF 0.04–0.15; SVM 0.18–0.68). We
calculated the intercept and slope of a regression between pre-
dicted risk and the outcome of chronic use (where perfect calibra-
tion would reflect an intercept of 0 and a slope of 1) and Eavg,
which is the average absolute difference between a smooth cali-
bration curve and the diagonal line of perfect calibration
(Figure 2) (22). We found the LR (intercept 0.01, slope 0.81, Eavg
0.006) and EN (intercept 0.00, slope 0.97, Eavg 0.006) models
had good calibration, whereas the RF model (intercept −0.04,
slope 1.44, Eavg 0.016) showed fair calibration. The SVM model
(intercept −0.05, slope 0.3, Eavg 0.346) had poor calibration
because this model was trained on rebalanced data, which does
not reflect the true incidence rate.

Table 2. Prediction performance of all models*

Prediction model
Held-out validation

Internal cross-validation

AUC (95% CI) Tuned threshold Sensitivity (95% CI) Specificity (95% CI)AUC (95% CI)

Random forest 0.728 (0.711–0.745) 0.756 (0.746–0.765) 0.102 0.648 (0.638–0.659) 0.731 (0.726–0.736)
Elastic net 0.717 (0.699–0.736) 0.731 (0.721–0.740) 0.094 0.632 (0.622–0.643) 0.721 (0.717–0.725)
Logistic regression 0.717 (0.699–0.734) 0.729 (0.720–0.738) 0.089 0.645 (0.635–0.654) 0.703 (0.699–0.706)
Support vector machine 0.702 (0.683–0.720) 0.723 (0.714–0.732) 0.523 0.668 (0.657–0.679) 0.661 (0.657–0.666)

* AUC = area under the receiver operating characteristic curve; 95% CI = confidence interval.
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Figure 2. Calibration plots for all models. Patients are split into deciles according to predicted risk. The average predicted risk within in each dec-
ile is then compared to the actual incidence. Calibration intercept and slope are shown in red, fit by regressing the outcome variable against the
predicted log odds across deciles. The black unity line indicates perfect calibration.
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Predictor importance. Based on the overall similarity in
performance across models, we selected for further analysis the
simplest (LR) and the most accurate (RF) models. We evaluated
the most important predictors as determined by the odds ratio
(LR) or impurity-based feature importance (RF) (19). Both models
had a wide range of significant predictors, which spanned the
complete set of predictor types (Figure 3A and B).

The most important predictors were substantially different
between models, with only 6 of the top 20 predictors in common.
To further explore these differences, we generated PDPs, which
show the relationship between a given predictor and the outcome
by marginalizing across all other predictors, for the most impor-
tant features in the RF model (Figure 3C and D and Supplemen-
tary Figure 3, available on the Arthritis Care & Research website
at http://onlinelibrary.wiley.com/doi/10.1002/acr.25013) (20).
These plots use simulations to explore the relationships the RF
model has learned between one of the predictors and the out-
come, including if the predictor is nonlinear (i.e., not monotonically
increasing or decreasing). The PDPs showed several nonlinear
relationships. For instance, patients who were only very recently
diagnosed (within the 14 days before index) with OA (according
to first observed diagnostic code on a claim or problem list)
(Figure 3C), and patients with fewer than 5 provider visits were
predicted as having a dramatically higher risk of chronic use
(Figure 3D).

Model transportability.We next investigated howmodels
could be expected to perform in new data sets that were not part
of the model development process (i.e., model transportability)

using a LOGO validation approach. We found variability in model
AUC across held out HCOs, spanning a range from 0.842
(excellent) to 0.571 (barely better than chance) (Figure 4A). The
variance of model AUC across organizations was much higher
than the expected variance based on models trained on identi-
cally sized random samples from the entire patient pool for both
LR (F = 7.52, p = 1.03 × 10−5, 2-sided F-test) and RF (F = 7.48,
p = 1.09 × 10−5) models (Figure 4B). Although the variance
across models was slightly higher for LR than RF in the LOGO
analysis, this difference was not statistically significant
(F = 1.54, p = 0.50).

DISCUSSION

We developed and evaluated several types of predictive
models using EHR data to estimate the risk of patients with OA
developing COU within 1 year of a new opioid prescription. Multi-
ple models offered meaningful predictive power, with the best
performing RF model yielding an AUC of 0.73 on a held-out test-
ing set. The LR and EN models had excellent calibration; i.e., the
predicted risk closely approximated the true patient risk. Predic-
tive models therefore offer a useful tool for clinical practice, in
which they could be used to estimate individualized risk of COU
to better inform care of patients with OA.

A primary objective of this study was to determine whether
complex black-box methods were better than simpler, more
interpretable approaches. Although the more complex RF model
had slightly (though significantly) greater discrimination ability in
the primary analysis, this difference was notably smaller than has
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Figure 3. Predictor importance. A, The 20 most impactful patient features (by coefficient magnitude) for the logistic regression model, and B, The
20 patient features with the highest Gini-based importance are shown. For both plots, colors group patient features into categories. C, Partial depen-
dence plots provide an estimate of the relationship between duration of OA orD, number of EM visits and the risk of COU. Population density plots show
the distribution of the study population. APAP = acetaminophen; benzo = benzodiazepine; BMI = body mass index; BS = bachelor’s
degree; ED = emergency department; EM = evaluation andmanagement visit; DX = diagnosis; IP = inpatient; NSAID = nonsteroidal anti-inflammatory
drug; OA = osteoarthritis; ortho = orthopedic; PCP = primary care physician; RX = prescription; SDOH = social determinants of health; zip = ZIP code.
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been reported in some studies (9,23). Although improved discrim-
ination can provide more accurate identification of at-risk patients,
these benefits must be weighed against the ethical and practical
concerns of implementing black-box models in the clinic (24).
Given the relatively small difference in terms of model discrimina-
tion (especially in validation data), as well as better calibration for
the LR model, we find that the more interpretable LR model is
likely preferrable in this application.

Although the current study was not designed to investigate
causal relationships, some of the predictor relationships uncovered
may be clinically relevant and suggest areas for future research. For
instance, any recorded pain score, including severe pain, was asso-
ciated with lower risk of COU. Although the trend across pain levels
was as expected (i.e., mild pain was associated with the lowest risk),
failing to record the pain score in EHR (either at the individual level or
HCO level) was associated with higher risk than any degree of docu-
mented patient-reported pain score, after accounting for other vari-
ables. Additionally, we found that patients with a very recent OA
diagnosis or very few provider visits had dramatically higher pre-
dicted risk in the RF model (Figure 4). With the current data set, we
could not address whether this is indicative of patient behavior (e.g.,
switching providers to seek opioids) or provider behavior (e.g.,
assigning a diagnosis code only to patients with severe pain).

As a secondary analysis, we explored the performance of the
LR and RF models when tested on HCOs that were not part of the
training set using a LOGO analysis. Model transportability—how well
a model can be expected to perform in a new environment—is an
increasingly important issue and is rarely investigated as part of nor-
mal model development for CPMs (25,26). The variability we
observed across organizations suggests that even the relationships
identified in a large, multicenter data set should not be presumed to
apply to HCOs outside of that data set. This is a critical consideration
when implementing CPMs and is one reason why CPMs often have
a smaller than expected impact on patient care (27,28). These results
suggest that care should be taken when extending these (and other)
CPMs into new health care settings that were not used as part of
model development.

There are many clinical scenarios in which estimating the risk
of COU in a subacute treatment setting may be beneficial for both
the prescribing physician and the patient. An example of such a
scenario may include a patient with severe OA pain awaiting joint
replacement surgery. A risk assessment, informed by the esti-
mates produced by this model, could foster a discussion
between the physician and patient about the risk that short-term
use of opioids may lead to COU. A net-benefit analysis (21) sug-
gests that both the RF and LR models presented here can
improve decision making across a range of risk tolerances
(Supplementary Figure 4, available on the Arthritis Care &
Research website at http://onlinelibrary.wiley.com/doi/10.1002/
acr.25013). The difference between the 2 models is small, making
the more interpretable LR model likely the best option for imple-
mentation in clinical practice. Ultimately, patients must be treated
individually, and risk estimates such as those provided by predic-
tive models can help providers and patients come to the best
decision possible.

Because this study includes only patients with diagnosed
OA who received at least 1 opioid prescription, the model may
not be applicable to general patients with OA, many of whom
may not be formally diagnosed in the EHR, nor to other patient
populations at risk for COU. Although efforts were made to
include only patients receiving opioids to treat OA pain (e.g., by
removing other common chronic pain conditions and surgical
encounters), it is impossible to determine if patients received
opioids for OA pain specifically. Finally, because this data set is
restricted to EHR data from 13 HCOs, it is likely that the inci-
dence of COU is underestimated if patients receive opioids from
other sources (e.g., other HCOs) that are not represented in this
data set.

This study employed a unified database of EHR data from
AMGA member organizations as mapped by Optum, and this
mapping process imposed uniformity on the data structure
across HCOs. This is relevant for the discussion of transportabil-
ity, because HCOs within this environment are likely to be more
similar to one another than they are to outside HCOs. Therefore,
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Figure 4. Transportability of models across health care organizations (HCOs). A, The performance of each model was evaluated using a leave-
one-group-out approach to estimate the discrimination ability of the model when implemented in a health system outside the training set. Each
iteration involved training on all but one HCO and then calculating the area under the receiver operating characteristic curve (AUC) on the remaining
HCO. B, Variability in performance across random samples which were not split based on organization (i.e., all HCOs are included in both training
and testing sets). LR = logistic regression; RF = random forest.
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the variability across organizations may have been even larger if
the analysis was extended to additional HCOs.
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