Changes in HbA1c After Initiating Real-time Continuous Glucose Monitoring (rtCGM) for Primary Care Patients with Type 2 Diabetes

Stephen Shields, MPH¹, Gregory Norman, PhD², Elizabeth Ciemins, PhD, MPH, MA¹ ¹AMGA (American Medical Group Association), Alexandria, VA ² Dexcom Inc., San Diego, CA, USA

BACKGROUND

- Many patients with type 2 diabetes (T2D) have suboptimal control and are not meeting their glycemic targets.
- Use of continuous glucose monitoring (CGM) devices has increased substantially for patients with T2D.
- However, the effects of real-time CGM (rtCGM) on glycemia in primary care patients with T2D, particularly those not on intensive insulin therapy, in real world settings has not been well studied.
- This retrospective observational study examined data from 13 AMGA member health systems and multispecialty medical groups.

METHODS

- A retrospective analysis was performed using EHR and outbound administrative claims data, which were extracted, mapped, and normalized by Optum®
- Inclusion criteria:
 - Patients with a diagnosis of T2D
 - Age 18–85 years
 - \geq 1 outpatient visit with a primary care provider (PCP) in the 18 months prior to rtCGM use
 - Initiated rtCGM between August 1, 2015, and September 30, 2020 (index date)
 - Hemoglobin A1c (A1c) lab values pre-index and 3–9 months post-index
- Exclusion criteria:
 - Diagnosis of type 1 or gestational diabetes
 - Evidence of hospice or palliative care
 - Death within 9 months of index date
 - Prior CGM use (any type)
- The cohort was stratified into two groups based on baseline A1c $(A1c > 7.5 \text{ and } A1c \le 7.5).$
- The primary outcome was change in A1c from baseline to 3–9 months following rtCGM initiation.

RESULTS

Mean (SD)				
	BL A1c	FUP A1c	A1c change	p-value
	9.27 (1.7)	8.14 (1.7)	-1.13 (2.3)	0.010
	10.05 (2.0)	8.45 (1.6)	-1.59 (2.3)	< 0.001
	9.24 (1.4)	8.48 (1.5)	-0.76 (1.6)	< 0.001
Mean (SD)				
	BL A1c	FUP A1c	A1c change	p-value
	6.52 (0.7)	6.52 (1.0)	0.00 (0.8)	0.983
	6.70 (0.6)	6.79 (0.8)	0.09 (0.7)	0.630
	6.84 (0.6)	7.00 (1.0)	0.16 (1.0)	0.108

n = 458

61 [54, 70]

231 (50%)

5 (1%)

7 (2%)

25 (5%)

28 (6%)

229 (50%)

195 (43%)

10 (2%)

3.7 (2.9)

34 (7%)

387 (85%)

Dexcom

STUDY LIMITATIONS

- Indication of use for CGM utilization is not known.
- Observational study design.
- Prescription data do not capture fills or patient use of medication.

CONCLUSIONS

- These findings suggest that rtCGM use can improve glycemic control in patients with poorlycontrolled T2DM regardless of therapy regimen.
- This real-world evidence supports further studies of the benefits of rtCGM in the broader T2DM population.

ADA 2022, Conference, June 3-7